# Laboratorium Cyfrowego Przetwarzania Sygnałów

Tytuł: Próbkowanie i kwantyzacja sygnałów ciągłych

### 1 Opis działania aplikacji

Skrypt należy uruchomić wpisując w linii komend *lcps1*. Okno programu, które otworzy się z domyślnymi parametrami zostało przedstawione wraz z opisem na rysunku 3. Po wybraniu żądanego sygnału do przetwarzania dokonywane są następujące operacje (patrz rys. 1): filtracja dolnopasmowa (określona przez częstotliwość odcięcia – filtr1), próbkowanie (określone przez częstotliwość próbkowania), kwantyzacja (kwantyzer równomierny lub nierównomierny o określonej liczbie poziomów kwantyzacji), filtracja dolnoprzepustowa nr 2.



Rysunek 1. Schemat przedstawiający operacje wykonywane przez skrypt

Kwantyzer nierównomierny określony jest przez krzywą kompresji typu  $\mu$  (patrz rys. 2) daną wzorem:



Rysunek 2. Krzywa kompresji typu µ



Rysunek 3. Okno aplikacji wraz z opisem poszczególnych elementów

## 2 Polecenia do wykonania

#### 2.1 Próbkowanie

#### 2.1.1 Sygnał SIN o częstotliwości 600 Hz

- a) Należy ustawić następujące parametry symulacji:
  - sygnał przetwarzany: SIN, częstotliwość 600 Hz,
  - zakres osi czasu na wykresie od 0 ms do 20 ms,
  - zakres osi częstotliwości na wykresie od -4 kHz do 4 kHz,
  - filtr f1 i f2 na 650 Hz,
  - częstotliwość próbkowania na 1,4 kHz,
  - liczba bitów na próbkę 64.
- b) Należy wykonać następujące operacje:
- obejrzeć widmo przed filtracją i po procesie próbkowania
- odsłuchać oryginał i sygnał przetworzony
- c) Zmienić częstotliwość próbkowania na 700 Hz; obejrzeć widma i odsłuchać;
  Co się zmieniło i dlaczego?
- d) Filtr 2 ustawić na 40 kHz; odsłuchać sygnał i obejrzeć wykresy;
  Co się zmieniło i dlaczego?
- e) Powtórzyć doświadczenie dla fs=10 kHz; (aby lepiej zaobserwować zmiany ustawić oś wykresu częstotliwości na zakres od -39 do 39 kHz)

f) Ustawić fs=45 kHz; filtry ustawić na 100 kHz, zakres widma na -100 kHz do 100 kHz, zakres wykresu czasowego od 5 do 7 ms, dziesiątkowanie wykresu czasowego na 1.

Jaki jest błąd RMSE? Czy odsłuchiwany dźwięk uległ poprawie? Jak wytłumaczyć obserwowane zjawisko?

#### 2.1.2 Sygnał mowy

- a) Należy ustawić następujące parametry symulacji:
  - sygnał nagrać, najlepiej wypowiadając zadanie (nie liczyć 1,2,3..),
  - filtr f1 na 7 kHz,
  - częstotliwość próbkowania na 14 kHz,
  - liczba bitów na próbkę 16.
- b) Ustawić filtr f2 (7 kHz) na nieidealny i zmieniać rząd filtru od 100 w dół do 5; odsłuchiwać sygnał po przetworzeniu i obserwować widmo po próbkowaniu i kwantyzacji;
  Sporządzić wykres RMSE, MSE od rzędu filtru. Dla jakiego rzędu filtru jakość odsłuchiwanego

# Sporządzić wykres RMSE, MSE od rzędu filtru. Dla jakiego rzędu filtru jakość odsłuchiwanego sygnału staje się akceptowalna?

- c) Powtórzyć to samo dla innego sygnału mowy, np. inna osoba wypowiada inne zdanie; czy otrzymane rezultaty są identyczne?
- d) Powtórzyć dla tego samego sygnału co w p. 3), ale przyjąć filtr f2 (nieidealny) 22050 Hz (filtr 1 również nastawić na wartość 22050 Hz) i fs=44.1 kHz; Sporządzić wykres RMSE (od rzędu filtru) oraz odsłuchać, co uległo zmianie?
- e) Ustawić fs=44.1 kHz, filtry na 22050 Hz (idealne). Zmniejszać fs,. kiedy aliasing zaczyna być słyszalny (dla jakiej fs, jaki jest wtedy błąd)?

#### 2.1.3 Podsumowanie zagadnienia próbkowanie

Czy RMSE jest zawsze dobrą miarą degradacji sygnału dźwiękowego?

#### 2.2 Kwantyzacja

#### 2.2.1 Nagrany sygnał mowy

- a) Dla nagranego sygnału mowy, dla standardowych parametrów (najlepiej zamknąć skrypt i otworzyć go jeszcze raz) obejrzeć histogramy błędu kwantyzacji dla kwanty zera nierównomiernego i równomiernego; wyniki skomentować, dlaczego wyglądają właśnie tak?
- b) Zmniejszać liczbę bitów kwantyzacji (od 16 w dół); sporządzić wykres SNR oraz RMSE od liczby bitów kwantyzacji (dla kwanty zera równomiernego i nierównomiernego); przyjrzeć się zmianom widma (po próbkowaniu i kwantyzacji) i postaci czasowej, co można zaobserwować? Jaka jest różnica w postaci czasowej sygnału po przetworzeniu dla kwantyzera równomiernego i nierównomiernego? Odsłuchać sygnały (dla obu kwantyzerów) przy różnej liczbie bitów na próbkę; skomentować odsłuch.

#### 2.2.2 Sygnał SIN

Wyznaczyć charakterystykę SNR od liczby bitów na próbkę dla kwantyzera równomiernego i nierównomiernego. Porównać wynik ze wzorem teoretycznym:  $SNRq \approx 1,761 + 6,02 \cdot q_{[dB]}$ , gdzie q jest liczbą bitów przypisanych na kwantyzację poziomów.

Skomentować różnicę pomiędzy SNR dla kwantyzera równomiernego i nierównomiernego. Czy kwantyzer nierównomierny opisany krzywą (rys. 2) jest optymalny dla sygnału sinus? Jaki jest rozkład prawdopodobieństwa rozkładu amplitud dla sygnału sinus?

#### 2.2.3 Wpływ parametrów krzywej kompresji na SNR

Dla sygnału mowy zmieniać parametr krzywej kwantyzacji  $\mu$  (*mu*) od 0.01 do 255; sporządzić wykres SNR od parametru  $\mu$ . Jaki jest optymalny parametr? Od czego to zależy?

#### 2.3 Kwantyzacja i próbkowanie – odczucia odsłuchującego

#### 2.3.1 Minimalizacja zasobów

Dobrać jak najmniejszą szerokość filtru, częstotliwość próbkowania, l. bitów na próbkę i rodzaj kwantyzera, aby dało się zrozumieć wypowiadane zdanie (pomimo zakłóceń). Do jakich wartości można zejść? Jaki jest wtedy SNR, RMSE ?

#### 2.3.2 Minimalizacja zasobów bez utraty jakości

Wybrać sygnał muzyka. To samo co w poprzednim punkcie, tym razem jednak do momentu gdy nie słyszymy spadku jakości odtwarzanego sygnału. Wnioski jak w poprzednim punkcie.