
1

Covert Channels in Personal Cloud Storage
Services: the case of Dropbox

Luca Caviglione†, Maciej Podolski∗, Wojciech Mazurczyk∗, Massimo Ianigro†
∗Warsaw University of Technology, Institute of Telecommunications, Warsaw, Poland

podolskimaciej91@gmail.com, wmazurczyk@tele.pw.edu.pl
† Institute for Intelligent Systems for Automation (ISSIA), Genova, Italy

luca.caviglione@ge.issia.cnr.it, ianigro@ba.issia.cnr.it

Abstract—Personal storage services are one of the most popu-
lar applications based on the cloud computing paradigm. There-
fore, the analysis of possible privacy and security issues has been
a relevant part of the research agenda. However, threats arising
from the adoption of information hiding techniques have been
mainly neglected. In this perspective, the paper investigates how
personal cloud storage services can be used for building covert
channels to stealthy exchange information through the Internet.
To have a realistic use-case, we consider the Dropbox application
and we present the performance evaluation of two different covert
communication methods. To understand the stealthiness of our
approach and propose countermeasures, we also investigate some
behaviors of Dropbox in a production quality deployment.

I. INTRODUCTION

Nowadays, cloud computing frameworks are widely used
both from desktops and mobile appliances to access resources
on-demand at reduced costs. Within this panorama, personal
cloud storage is definitely one of the most popular applications
[1]. Owing to this success, a core part of the research focused
on security and privacy threats of cloud computing [2], [3],
[4], together with new issues such as the handling of Big
Data [5]. As regards personal cloud storage applications, [6]
addresses hazards characterizing the entire life-cycle of the
stored information. The works [7], [8] focus on solutions to
guarantee security and service level agreement requirements.
Reference [9] discusses how to undertake digital forensics
investigations on personal data storage applications, while
[10] proposes a general framework for a publicly auditable
infrastructure.

However, emerging threats and attacks taking advantage of
information hiding have been partially neglected. Even if such
technique can be also used for licit purposes (e.g., to prevent
censorship), it is primarily utilized to develop new malware
able to covertly exfiltrate data while remain unnoticed for
long times or to bypass sandbox-based policies of smartphones
[11], [12]. Despite the growing attention on the adoption of
covert channels to perform attacks, only few works consider
cloud computing [13], [14]. The most relevant is [15], which
demonstrates how to create a side channel in cloud storage
services when the deduplication feature is enabled. The main
idea is that, if a file is already present in the cloud, all
clients would be informed to prevent unnecessary uploads of
data. This knowledge could be used as a vector to transmit
information or to perform a bruteforce attack against a stored

secret. However, this method has a very limited feasibility,
since service-wide deduplication is no longer used in commer-
cial services and countermeasures have been developed [16].
Reference [17] partially deals with information hiding, since
it addresses the data leakage among virtual machines running
on the same server by means of covert channels using load or
cache measurements.

As today, many personal cloud storage applications exist,
for instance Apple iCloud, Microsoft OneDrive, Google Drive
and Dropbox. However, Dropbox is the most popular one and
outperforms the others in terms of users and produced traffic
[1], [18]. In this perspective, the paper discusses the design
and implementation of different covert channels exploiting the
internals of the Dropbox platform, which is considered as a
synecdoche of personal cloud storage services. Understanding
this type of covert channels is of particular importance, since
they mainly lie within huge traffic volumes and mixed sets
of information. Thus, their detection or mitigation could lead
to cyber security issues involving Big Data. To prevent that
a too aggressive exchange of hidden information is easily
recognized as an anomaly and to propose countermeasures,
this work also partially investigates some network behaviors
of Dropbox. However, providing a detailed traffic analysis is
outside the scope of this work, and it has been already done
in [1], [19].

At the best of our knowledge, this is the first work applying
information hiding techniques to enable two endpoints covertly
exchanging data through Dropbox. Prior investigations only
focus on classic security and privacy attacks (see, e.g. [20]),
but they are outside the scope of our work. Therefore, the main
contributions are: i) the analysis of different covert channels
targeting personal cloud storage services, ii) the implementa-
tion and the performance evaluation of two techniques, iii) a
specific “behavioral” analysis of Dropbox users, and iv) the
definition of countermeasures to prevent hidden channels in
personal cloud storage services.

The rest of the paper is structured as follows. Section II
briefly introduces the architecture of Dropbox. Section III
presents the reference scenario and possible covert channels
exploiting personal cloud storage applications. Section IV
deals with the design of two techniques, Section V presents
numerical results collected in a real-world testbed, and Sec-
tion VI proposes countermeasures and mitigation techniques.
Lastly, Section VII concludes the paper.

Copyright (c) 2016 IEEE. Personal use of this material is permitted. However, permission to use this material forany other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

2

II. DROPBOX: AN OVERVIEW

Dropbox1 is a cross platform application running on
OSX, iOS, Android, Windows/WindowsPhone and Linux. In
essence, it offers a storage service, which can be accessed
from the browser or automatically synced with the local file
system via an ad-hoc client interface running in background. It
also enables collaboration by allowing users to exchange up-
to-date contents located in a shared folder. The Web version
of Dropbox offers a basic backup service, which can be used
to revert to a prior version of a file, for instance to cope with
accidental deletions or modifications.

To store and synchronize files, Dropbox relies upon two
different cloud computing infrastructures [21]. The first is
based on the Amazon S3 storage service, which is respon-
sible for physically hosting files. While the organization of
the file system of each user is forced by the guest OS,
the Dropbox architecture internally adopts namespaces. Each
user (or shared folder) has a unique root namespace and
contents are located by using relative paths. Then, the client
interface exchanges with the Amazon cloud the traffic needed
to upload, update and retrieve a given file together with
metadata describing the content. When a user locally creates
or changes a file, it is synchronized with remote servers.
To avoid excessive bandwidth requirements and to increase
the Quality of Experience (QoE), files are split into blocks
having a maximum size of 4 Mbytes, each one marked with
an SHA-256 hash. The list of hashes is used to identify
the file in a unique way in the framework including the
file system journal [22]. Handling small portion of data in
a separate manner allows to transmit to servers (named block
servers) only blocks that have changed, rather than the whole
file. This is used by the client interface to perform further
optimizations. The first is delta encoding, which detects mod-
ifications and upload/download blocks selectively. The second
improves the throughput by means of compression [19]. An
additional enhancement pipelines the transmission of blocks
to reduce the latency experienced by users [23]. According
to the Dropbox site, the core functionalities for exchanging
files are implemented via librsync [24]. The produced traffic
represents the data plane of Dropbox and it is transported via
TCP and encrypted with the Secure Socket Layer (SSL) [1].

Dropbox also enables devices located in the same LAN to
sync. Recalling that files are stored in the Amazon datacenter,
the normal approach requires that a device sends data to the
cloud while the other retrieves the modified blocks from the
Internet. From version 2.10, Dropbox implements a “stream
sync” feature, i.e., the downloading client interface retrieves
blocks even if the uploading peer has not completed the
commit. This can still lead to performance bottlenecks, hence
users would benefit if a direct communication among the two
devices is possible. To this aim, Dropbox uses an additional
protocol, named db-lsp, composed of two parts. The first is
db-lsp-disc and queries the local network every 30 seconds to
find devices by means of broadcast UDP messages sent on
port 17500. If a device is found, the second part of the db-lsp
directly starts an encrypted TCP conversation on the same port

1http://www.dropbox.com

Alice	 Bob	Covert	Channel	

Internet	

Dropbox	Cloud	

Dropbox	Traffic	 Warden	

Fig. 1. Reference scenario for the development of a covert channel targeting
the Dropbox personal cloud storage service.

to negotiate parameters and directly exchange data. To avoid
multiple incoherent snapshots in the system, the Amazon cloud
has to be updated as well, but this can happen in background
without degrading the perceived QoE. At the time of writing,
the db-lsp is only supported by client interfaces running on
desktops.

The second datacenter composing the architecture is op-
erated by Dropbox and it is in charge of authenticating
users, handling the proper “signaling” traffic and keepalives to
recognize if a host has disconnected. Specifically, it notifies
the client interfaces about modifications of a shared content
and it sends pointers to retrieve the needed blocks from
the Amazon datacenter. In this case, proper servers (named
metadata servers) “resolve” hashes and exchange information
with the Amazon cloud to preserve the coherence of the
information. Another important portion of the framework is
given by the notification protocol, which dispatches all the
changes performed on a file throughout the entire architecture.
The resulting flow of traffic represents the control plane and its
functionalities are implemented via an HTTP-based protocol
exploiting long polling transmitted through TCP/SSL [1].

III. REFERENCE SCENARIO AND ANALYSIS OF CHANNELS

In this section, we present the considered reference sce-
nario and we showcase potential covert channels exploit-
ing Dropbox. In the following, we use interchangeably the
terms network covert channel, hidden communication, and
steganographic channel, except when doubts arise [25], [26].
Besides, we consider network steganography as the technique
to create covert channels for hidden communication. However,
such covert channels do not exist in communication networks
without steganography (only the “possibility” exists a priori)
[26]. In general, covert channels are characterized by the
following performance indexes [26], which will be used in
the rest of the paper:

• steganographic bandwidth: defines the volume of secret
data sent per time unit;

• undetectability: quantifies the inability of discovering the
presence of secret information within the carrier;

• robustness: represents the resistance of a covert channel
against impairments.

We assume that Alice and Bob want to establish a covert
channel to communicate in a stealthy manner through the
Internet. All the messages are inspected by a Warden, which
can be placed everywhere in the path. This general use case is

3

a variant of the “prisoners’ problem” formulated by Simmons
[27] and depicted in Figure 1. For the sake of simplicity, the
Amazon and Dropbox datacenters have been coalesced into
a unique entity named “Dropbox Cloud”. We point out that
this scenario is general enough also to represent a malware
using an information-hiding-capable communication layer to
exfiltrate data from the host of a victim (Alice) towards a
remote Command & Control facility (Bob) [28].

Different parts of the Dropbox architecture can be used as
a carrier for storing secret information. As an example, Alice
and Bob could share a folder via their client interfaces. In this
case, each alteration of its content (e.g., the name of a file is
modified) is notified to the cloud and then propagated to all the
subscribers. Alice can encode secrets in well-defined patterns
of operations, i.e., two consecutive changes of the same file
denotes 1, while deleting a file denotes 0. On the receiving
side, Bob can decode the information by knowing the shared
secret, i.e., the encoding scheme used by Alice. Therefore, the
covert channel lies within the sequence of legitimate actions
propagated by the notification protocol of Dropbox.

A Warden can be arbitrarily placed to spot the secret flow of
information. It can be deployed on the local host of Alice (or
Bob), e.g., in the file system, to detect suspicious operations
due to the ongoing data hiding process. It can be put in an
intermediate network node to reveal the presence of the hidden
channel from some features of the resulting legitimate traffic,
e.g., the volume of notifications deviates from the average
user behavior thus representing an anomaly. Consequently, the
steganographic bandwidth of the covert channel between Alice
and Bob and its detectability are tightly coupled [29]. For the
considered example, the more secret bits are exchanged (i.e.,
the number of modifications performed to the shared folder),
the higher is the traffic produced by Alice and Bob towards the
Dropbox cloud. Thus, a proper trade-off between transmission
rates and stealthiness has been searched for by means of traffic
measurements.

A. Covert Channels Analysis
By considering the reference scenario depicted in Figure

1, we investigate potential covert channels exploiting personal
cloud storage services.

First, we present methods using the network traffic of
Dropbox as the carrier. Therefore, the secret sender is a client
interface and the secret receiver decodes information in an
intermediate network node, as depicted in Figure 2 - cases A
and B. In more details:

1) volume-based: secrets are encoded by generating different
amounts of traffic over the network. For instance, the
secret can be produced by syncing a file multiple times
(time-based encoding) or by varying its size (volume-
based encoding). This method has two main drawbacks:
i) a Warden can easily detect the covert channel by
inspecting the overt network traffic or by monitoring the
file system of the hosting machine [30], [31], [32], and
[33]; ii) optimization algorithms prevent a fine-grained
control on the traffic volumes, e.g., if a file/bock already
exists in the cloud, only a notification is produced rather
than a complete transmission [1], [19].

Overt		
Sender	

Network	
Node	

Overt		
Receiver	

Network	
Node	

Secret	
Sender	

Secret	
Sender	

Secret	
Receiver	

Secret	
Receiver	

Secret	
Sender	

Secret	
Receiver	

Covert	Channel	

Covert	Channel	

Covert	Channel/	Overt	Communica)on	

Overt	Communica)on	

Overt	Communica)on	

A	

B	

C	

Network	Traffic	

Network	Traffic	

Ac)ons	

Fig. 2. Different covert/overt channels exploiting a personal cloud storage
service.

2) throttle-based: secrets are encoded in well-defined values
of the throughput. However, the presence of delta en-
coding may impede to have enough flexibility to obtain
arbitrary throughput values to represent the information.
The Warden can exploit the same techniques of 1) or
simply void the channel via traffic normalization [30].

3) timing-based or storage-based: secrets are encoded by
modifying certain features of the Dropbox traffic (e.g.,
delays between two packets) or by changing the header
content. The Warden can utilize the same countermea-
sures presented in 1) and 2).

4) type-based: secrets are encoded by forcing the client in-
terface to switch between the db-lsp and rsync protocols.
For instance, the secret data 110 can be notified by
producing network packets carrying a db-lsp, db-lsp and
rsync sequence. Unfortunately, the usage of db-lsp limits
the scope of the covert channel to the LAN.

5) time-stamp: each minute, the client interface sends a time-
stamp to the Dropbox cloud within an HTTP request,
which can be used as the carrier.

Second, we discuss methods considering Dropbox as a black
box. In this case, protocols and internals are ignored, and data
is injected by posing as a human user. In other words, the
secret sender processes the content of a folder shared with the
secret receiver, which infers information. The resulting covert
channel lies within the flow of overt notifications/actions
exchanged among client interfaces and the Dropbox cloud,
as depicted in Figure 2 - case C. Specifically:

6) upload of new files: secret bits are hidden in the time
at which the secret sender adds new files to the shared
folder. Unfortunately, the intervals observed by the secret
receiver heavily depend on the status of the network. This
limits the “rate” of file uploads, reduces the achievable
steganographic bandwidth, and makes the method very
fragile to errors. The injection of a secret requires many
operations on the file system, thus a Warden residing on
the guest OS can easily spot the channel.

7) renaming of files: the hidden data is embedded in the
name of files assigned by the secret sender. Since chang-
ing the filename only requires to update a metadata, this
leads to a small amount of traffic. Even if a Warden
placed in the network has limited chances to detect the

4

channel, one deployed on the host can spot massive
renaming operations. Yet, reducing the throughput and
using suitable name-encoding or encryption scheme for
filenames can increase the stealthiness of the process.

8) movement of files: secrets are encoded by moving or
deleting files within the shared folder. Since each change
on the file hierarchy of a Dropbox folder has to be
propagated, bits are signaled via bursts of operations.
Again, changes should be limited as to avoid triggering
a Warden in the local file system.

9) size modulation: the hidden information is encoded by
shrinking/inflating the size of files. If the number of
changes/secrets is small, Dropbox optimizations can limit
the traffic making the detection difficult. Indeed, aggres-
sive adjustments lead to anomalous network behaviors
resulting in to a channel with a poor stealthiness.

10) alteration of file: the hidden data is embedded in how
the file is modified. Owing to optimizations, changes in
a single block produce a minimal amount of traffic. This
requires the Warden to identify short-living TCP bursts
within the bulk of data, which is non-trivial especially if
only one block has changed.

11) type of device: Dropbox can keep track of which device
modified a file. Secrets are encoded by creating a device-
to-file map, e.g., modifying a file on a smartphone is 1,
while on a desktop is 0. Alas, such information is not
propagated among client interfaces, but requires to log
into the Dropbox website. The resulting implementation
is byzantine and easy to spot.

12) modification of folder: this method exploits folders in-
stead of files. From the traffic point of view, the resulting
load is very modest, as blocks composing files are never
transmitted. Yet, massive alterations of folders cause
abnormal bursts of notifications that can can be detected
by a Warden.

For the sake of completeness, we briefly present a technique
directly injecting data in the Dropbox client interface. In this
case, the cloud portion of the framework is bypassed via the
db-lsp protocol, which is used to establish a direct TCP point-
to-point channel over the LAN. Unfortunately, since August
2013, the Dropbox client interface has been updated three
times per month (on the average), making the mechanism
difficult to implement and maintain, especially for a real-world
attacker targeting a mixed set of platforms. Moreover, the
method could be beaten via normalization [30] or detected
by using Deep Packet Inspection (DPI) [34].

Summarizing, methods 1) - 3) are not Dropbox-specific and
have been previously used in the literature, see, e.g., [26],
[35]. Additionally, the Warden can detect or block the covert
channel by simply inspecting the traffic, thus reducing its
effectiveness. Methods 4) and 5) have been reported only for
the sake of completeness, since 4) can not be used on an
Internet-wide scenarios and it is limited to desktops, while 5)
is no more available as Dropbox now uses TLS preventing a
secret receiver to access and decode the data embedded in
the time-stamp. Methods 6), 8) and 12) should have poor
bandwidth as to avoid that a Warden deployed on the host

can easily spot the burden of operations performed on the file
system. The method proposed in 9) has a poor stealthiness
since the creation of new blocks produces non-negligible flows
of data, which can be spotted. Lastly, 11) requires the Web
version of Dropbox, thus making the implementation of the
covert channel highly detectable. For such reasons, in the
following we investigate techniques 7) and 10) since they are
the most promising and rely upon different information hiding
approaches with a mixed set of complexity.

IV. DESIGN OF THE COVERT CHANNELS

In this section, we describe the design of two methods
exploiting Dropbox to establish a covert channel.

As discussed in Section III, we assume that both the secret
sender and the secret receiver (i.e., Alice and Bob) share a
Dropbox folder populated with some innocent-looking files.
We also assume that they known in advance the set of files
to be used for the steganographic purposes. Other files can
be present and act, for instance, as a decoy. Without loss
of generality, methods can work in two modes: synchronous,
i.e., both endpoints have to be active at the same time,
or asynchronous, i.e., the receiving side does not need to
continuously monitor changes.

A. Renaming of File Method

The renaming of file method, denoted in the following
as REN, exploits the filename as the carrier, i.e., the secret
information is encoded in a textual form. Accordingly, it solely
relies upon text steganography. With L, we define the number
of characters that can be used to hide information. Despite
the file system of the guest OS, Dropbox limits the length of
filenames to 255 characters, hence L ≤ 255. To hide data,
the secret sender implements a proper function, which maps
the message to be transmitted M into a string of characters S
containing the secret. If S ≤ L, it can be injected into a single
filename, while for S > L multiple files are needed, or many
rounds of processing have to be applied on the file. Figure 3(a)
depicts a simple graphical representation of the method. More
sophisticated schemes using only a fraction of L characters or
using a cross-file approach to reduce the probability of being
spotted by a Warden can be developed, but it is outside the
scope of this paper. Possible examples for encoding secrets
are: character existence, e.g, if a specific letter is present 1
is inferred and 0 otherwise, or a direct injection by using the
UTF-8 encoding as a dictionary.

By considering a synchronous usage, the following steps
are performed: 1) the original names of files in the shared
folder are saved along with their MD5 signatures; 2) the
secret sender modifies the name(s) of the chosen file(s) with
characters encoding the secret data; 3) upon detecting changes,
Dropbox synchronizes and propagates such information to the
secret receiver; 4) upon detecting changes, the secret receiver
decodes the secret data from the filename(s); 5) when the
hidden data transfer is completed, the name of file(s), identified
via their MD5 signatures, is restored.

When operating in synchronous mode, the secret sender
is only aware that data has been synchronized with the

5

cloud, but it has no knowledge of the outcome. This could
create incoherent statuses. For instance, the modification of a
filename can occur twice before the receiving peer is notified.
Hence, this requires a proper control protocol, e.g., to let the
secret receiver acknowledge the secret sender that the content
has been read. However, developing such form of signaling
is outside the scope of this work. A possible workaround
would be using an asynchronous mode. In this case, one can
exploit the revision feature of Dropbox. The secret receiver
can retrieve from the Web interface the list of all the changes
made as to reconstruct the history of modifications to extract
the secrets.

As regards a possible implementation, the REN mechanism
can be realized by using the Dropbox client interface, via the
web-based access or in a mixed form. For instance, the secret
sender could change data by using proper scripts running on
a shell, while the secret receiver can be a Rich Site Sum-
mary (RSS) daemon polling its web account and periodically
inspecting filenames to extract the hidden information.

B. Alteration of File Method
The alteration of file method, denoted in the following as

ALT, uses the contents of the file as the carrier, i.e., the secret
data is embedded in “where” the file is modified. In essence,
ALT takes advantage from the delta encoding algorithm, i.e.,
only parts of files differing from those already available in the
personal cloud storage are uploaded. Let us assume a message
to be covertly transmitted with a size of M bytes, denoted as
m1,m2, . . . ,mM . Then, with a little abuse of notation, the
covert sender implements an encoding scheme to hide M into
the S bytes of a file. To this aim, the carrier (i.e., the file)
of size F is subdivided into K equal chunks, each one of
C bytes, with S < K = F/C. Notice that chunks are only
used for encoding the data and must not be confused with the
blocks used by Dropbox to transfer the information. In the
following, to avoid ambiguities, we refer to parts of the file
altered for steganographic purposes solely as chunks. For the
sake of simplicity, we assume C = 256 bytes, since it allows
to transfer one byte of secret data per chunk. In Section V, we
relax such hypothesis and we consider different values for C.
Additionally, the smaller C, the higher K, then the resulting
changes could be stealthier as only a small fraction of the
original content is modified. We point out that C = 256 bytes
allows to precisely add up to 4 Mbytes, which is the maximum
block size supported by Dropbox.

Then, the encoding scheme used is as follows. First, the
designated file is divided into K chunks. Then, the covert
sender converts m1 into its decimal representation, defined
as d1, which is used as a pointer to modify the carrier, i.e.,
the d1-th byte of the first chunk is modified. Upon detecting
changes, Dropbox synchronizes the content with the cloud and
pushes data towards the secret receiver. The latter extracts the
secret information by comparing the new and the old chunks
contained in the updated blocks as to discover the position of
the changed byte containing the secret, i.e., d1. The process is
then iterated for the remaining M −1 bits of information and,
finally, the file is restored. Figure 3(b) provides a graphical
representation of the data hiding process.

Dropbox	folder	
File	no.	1	
File	no.	2	
File	no.	3	
.	
.	
.	

Modified	Dropbox	folder	
File	no.	1	
File	no.	2	
Modified	name	of	the	file	no.	3	
.	
.	
.	

Content	of	
the	

Dropbox	
folder	

Transmi<ed	secret	data	bits:		
L	characters	of	the	filename	

	
(a) REN method.

Carrier	file	

Byte	no.	0	
Byte	no.	1	
Byte	no.	2	
.	
.	
Byte	no.	255	
Byte	no.	256	
Byte	no.	257	
.	
.	
.	
Byte	no.	511	

Byte	no.	512	
.	
.	
.	
	
	

Modified	file	

Byte	no.	0	
Byte	no.	1	
Modified	byte	2	
.	
.	
Byte	no.	255	
Byte	no.	0	
Byte	no.	1	
.	
.	
.	
Modified	byte	255	

Byte	no.	1	
.	
.	
.	
	

First	
256	byte		
chunk	

Second	
256	byte		
chunk	

Third	
256	byte		
chunk	

...	 ...	

Transmi<ed	
secret	data	bits:	
00000010	(2)	
1111111	(255)	

	

...	

(b) ALT method.

Fig. 3. Representation of methods used to encode secret data.

Same considerations of the REN method about using single
or multiple files, the need of developing a proper signaling,
as well as pitfalls regarding synchronous/asynchronous imple-
mentations hold. The ALT method requires to tightly interact
with files, thus the covert channel should be implemented by
using the client interface jointly with ad-hoc scripts to properly
manipulate contents [36]. In fact, the need of reverting a file
to its original form is more critical, as altering random bytes
could lead to corrupted files, which can be easily spotted.

V. PERFORMANCE EVALUATION

To evaluate the performance of the covert channels, we
implemented the secret sender and the secret receiver on Linux
desktops by using the Python Dropbox APIs v. 2.2.0 and the
CLI version of the client interface.

For each round of tests, two different cases have been
considered. The first addresses an error-free scenario, i.e., the
steganographic channel has been only affected by uncontrol-
lable errors or delays introduced by the Internet. The second
introduces additional impairments to quantify the robustness
of channels. To this aim, delays have been added by using
netem and we used IPtables to simulate losses and to
avoid the need of a proxy. To collect traffic traces, we used
the Wireshark traffic analyzer.

To have proper statistical relevance, each experiment has
been repeated 10 times, and aimed at exchanging secrets
of different lengths, which have been randomly generated
to avoid correlations or biased distributions of the encoded
information. To produce numerical results, we used tshark
and ad-hoc Python and bash scripts.

As regards the traffic investigation for assessing the stealth-
iness of the proposed approaches, measurements have been
conducted on the metropolitan area network of the National
Research Council of Italy (CNR) in Bari, which daily serves
more than 1, 500 unique users. Traffic has been captured for
about one month and in two different periods of the 2015,
i.e., from Feb. 11th to 23rd, and from March 8th to 20th. Data

6

TABLE I
DELAYS FOR THE ALT METHOD WITH DIFFERENT SIZES OF THE FILE AND DELAYS FOR THE REN METHOD WITH DIFFERENT FILENAME LENGTHS.

ALT

F [bytes]
1K 5K 10K 50K 100K 500K 1M 5M 10M 50M 100M

td [s] 5.48 6.29 5.12 5.24 6.35 7.85 10.83 27.89 41.78 187.67 364.21

REN

L [N. of characters]
1 64 128 192 255

td [s] 3.3 3.2 3.6 3.5 2.7
Bandwidth [bit/s] 2 162 286 442 753

Volume of changed bytes [bytes]
Init 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

D
at

a
se

nt
 to

 th
e

bl
oc

k
se

rv
er

 [M
by

te
s]

0

1.0

2.0

3.0

4.0

5.0

(a) Impact of delta encoding on uploaded data.

Size of the chunk [bytes] - C
256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

S
te

ga
no

gr
ap

hi
c

B
an

dw
id

th
 [b

it/
s]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(b) Impact of the chunk size on the bandwidth.

File Size [bytes] - F
1k 5k 10k 50k 100k 500k 1M 5M 10M 50M 100M

S
te

ga
no

gr
ap

hi
c

B
an

dw
id

th
 [b

it/
s]

100

101

102

103

104

Measured
Theoretical Bound

(c) Impact of the file size on the bandwidth.

Fig. 4. Behavior of the delta encoding used to upload data and analysis of the steganographic bandwidth when varying C and F in the REN method.

has been collected and processed on a Linux Workstation with
two 2.40 GHz Intel Xeon E5-2609 CPUs. The machine has
been directly connected via a gigabit link mirroring the traffic
managed by the router towards the GARR network (i.e., the
ISP of Italian Universities and Public Research Centers). The
resulting dataset had a size of 1, 400 Gbyte and contained
more than 1, 742, 279 conversations seen between 289, 392
unique IP Source - IP Destination tuples. Collected traces have
been anonymized by using tcprewrite. The traffic has been
processed by using tshark, tcpdump and bash scripts.

A. Steganographic Bandwidth

This round of tests evaluates the steganographic bandwidth
of the covert channel, i.e., the rate at which the secret sender
and the secret receiver exchange information. With td, we
denote the delay in seconds between a request for synchroniza-
tion from the client interface and the time when the Dropbox
cloud completes the process and notifies users.

First, we investigate the performances achieved by the
REN method. As discussed, the secret data is encoded within
the filename, therefore longer names offer more capacious
carriers. We considered different sizes of the carrier, i.e.,
L = 1, 64, 128, 192, and 255 characters. We also assumed to
have an UTF-8 encoding, hence each symbol can contain 8 bit
of secret information. Table I presents the collected results. As
shown, td is insensitive to the amount of secret data stored, i.e.,
L. This confirms that delays are only ruled by the network and
the burden experienced by the Dropbox cloud and the client
interface. The overhead in terms of metadata to be sent does

not vary with L and, on the average, the parties synchronize
by receiving the required notifications in td ' 3 seconds. The
steganographic bandwidth, increases with L as expected and
ranges from 2 up to 753 bit/s. However, delays impose an
upper bound B given by B = 8·L

td
bit/s.

Second, we considered the ALT method. Compared to REN,
it has a more complex interaction with the Dropbox cloud,
thus we preliminary evaluated some behaviors to understand
impacts over td and to elaborate on the undetectability of the
covert channel. For this trial, a file having the size F = 4
Mbytes has been chosen. Figure 4(a) depicts the relation
between the amount of changed data and the volume sent to
block servers in the Amazon cloud. With ‘init’ we refer to
the upload of a new file, i.e., block servers need to receive
the content for the very first time. In this case, the amount of
data to be transferred corresponds to the whole file, plus an
overhead for the metadata, TLS encryption and handshaking.
Surprisingly, the delta encoding is not always used, i.e., for
changes needing to update less than 8 kbytes, the whole file is
uploaded. Therefore, Dropbox applies optimizations by using
an internal threshold, supposedly to perform a trade-off among
CPU/disk utilizations and bandwidth savings.

The size of the carrier plays an important role also for the
ALT method. Specifically, larger files have more data to be
changed for embedding secrets. Since each modification in
the local file requires to update the cloud, the td limits again
the rates at which the secret sender can encode information.
Table I reports the collected values with C = 256 bytes.
As shown, td grows with F , but it remains bounded until

7

Packet Loss [%]
0 2 4 6 8 10 12 14 16 18 20

S
te

g.
 B

an
dw

id
th

 [b
it/

s]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500
ALT C=8 kbytes
ALT C=256 bytes
REN L=255

(a) Steganographic bandwidth with different packet losses.

Packet Delay [ms]
0 50 100 150 200 250 300 350 400 450 500

S
te

g.
 B

an
dw

id
th

 [b
it/

s]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500
ALT C=256 bytes
ALT C=8 kbytes
REN L=255

(b) Steganographic bandwidth with different packet delays.

Packet Loss [%]
0 2 4 6 8 10 12 14 16 18 20

S
yn

c
D

el
ay

 [s
] -

 t d

0

10

20

30

40

50

60

70

ALT C=256 bytes
ALT C=8 kbytes
REN L=255

(c) Synchronization delay td with different packet losses.

Packet Delay [ms]
50 100 150 200 250 300 350 400 450 500

S
yn

c
D

el
ay

 [s
] -

 t d

0

50

100

150

200

250

300

350

400

450

500
ALT C=256 bytes
ALT C=8 kbytes
REN L=255

(d) Synchronization delay td with different packet delays.

Fig. 5. Behaviors of the steganographic bandwidth and synchronization delay td for the REN and ALT methods with different impairements.

F = 1 Mbyte. Therefore, F is a critical parameter, as for
undetectability reasons, it could be convenient having multiple
files but with smaller sizes, rather than a unique big one.
Recalling the mechanism used to inject the information, both
F and C affect the achievable bandwidth. Figure 4(b) and 4(c)
portrait their impact on the capacity of the covert channel. The
best performances are obtained when the C = 256 bytes, as
it allows to embed a greater amount of data and guarantees a
covert channel with a bandwidth of about 4.5 kbit/s. Higher
values of F account for more room in the carrier to inject
secrets, but at the price of an increasing volume of traffic
generated through the Internet. As regards the steganographic
bandwidth, the theoretical bound is given by B = F ·8

C·td bit/s,
and the optimal upper bound is when C = 256 bytes. As
depicted in 4(c), best performances are achieved for F greater
than 5 Mbytes. Even if the capacity of the covert channel
constantly grows with the unique exception of F = 512
kbytes, td prevents to reach the theoretical limit.

B. Robustness

To investigate how network impairments affect the perfor-
mance of covert channels, we modeled hazards via packet
losses and delays, e.g., to consider congestion in the Internet or
intermittent connectivity of mobile devices. For both methods,
the packet loss varied in the 0 − 20% range, while delays
varied in the 0− 500 ms range, as to consider different types
of wireless mobility, i.e., from cellular to satellite [37]. For

the REN method, we set L = 255 as it provides the best
performances in terms of steganographic bandwidth. For the
ALT method, we choose F = 4 Mbytes as it represents a
good trade-off among the throughput of secret information
and undetectability. In this case, we performed two different
investigations to understand the roles of C and delta encoding.
To this aim, we undertook experiments with chunks having the
size of C = 256 bytes and C = 8 kbytes. Figure 5 depicts the
collected results averaged over all the trials.

In more details, Figure 5(a) shows the impact of the packet
loss on the steganographic bandwidth. In the case of REN,
the covert channel compensates to losses smaller than 14%,
whereas for more severe values its throughput reduces. A sim-
ilar behavior is also experienced by the ALT method. Figure
5(b) depicts how packet delay influences the steganographic
bandwidth. Similar for the packet loss, the delays reduce the
throughput achieved by both methods. To understand such
behavior, Figures 5(c) and 5(d) portrait the impact of packet
losses and delays over the synchronization delay td.

For the case of REN the higher Round Trip Time (RTT)
accounts for a performance degradation of the TCP/HTTP,
hence limiting the amount of information that can be ex-
changed between the client interface and the Dropbox cloud.
This is mainly due to the protocol hierarchy in charge of
delivery the signaling and metadata. In fact, TCP/HTTP can
absorb burst of errors, but they will stop properly working
when in the presence of heavily impaired channels (e.g.,

8

Days
5 10 15 20 25

N
um

be
r o

f U
se

rs

0

50

100

150

200

250

300

350
client interfaces
website
links

Fig. 6. Number of users accessing Dropbox subdivided for type of service.

due to retransmissions and timeouts). In this case, the client
interface stops exchanging data with the Dropbox cloud, thus
interrupting the flow of information between the secret receiver
and the secret sender. Again, the high RTT reduces the number
of operations that can be completed in a given timeframe
by the ALT method. Similar to the error-free scenario, the
covert channel achieves the best steganographic bandwidth for
C = 256 bytes. Owing to the behavior of delta encoding (see
Figure 4(a)), when C = 8 kbytes, less data is exchanged with
Dropbox, including blocks sent to Amazon and information
carried by the synchronization protocol. Oddly, this reduces
performances as larger chunks encoding the same information
require to alter different blocks. Instead, when C = 256
bytes the increased amount of traffic allows the TCP to better
utilize the available bandwidth. This sort of “parallelization”
compensates delays and saturates the bandwidth from the
client interface towards Dropbox, leading to a higher flow of
information between the secret sender and the secret receiver.

C. Undetectability

Undetectability is fundamental for characterizing a covert
channel. To this aim, we discuss some behaviors of Dropbox
to: i) tune the information hiding methods as to increase their
stealthiness, and ii) enlighten the most critical features to
develop an effective Warden. We recall that our scope is to in-
vestigate information hiding in personal cloud storage services
(see, e.g., [1], [19] for comprehensive traffic characterizations).

As a first step, we evaluate if implementing a covert channel
within a client interface can be considered as an anomaly.
To identify how an endpoint accesses Dropbox, the ideal
method would require to “force” the TLS encryption and
directly inspect the host_int and host_id fields used in
the notification protocol. This is not a viable solution, thus
we considered the endpoints of TCP conversations, as each
Dropbox service has a specific range of IP addresses. As
regards identification of hosts, the DHCP is only used for
few guest devices, hence the noise introduced by dynamic
addressing is very limited. Figure 6 depicts the number of
hosts accessing the different services delivered by Dropbox.
As shown, the majority uses the storage service via the client
interface, but also the web-based platform has a relevant

Days
5 10 15 20 25D

ai
ly

 A
m

ou
nt

 o
f T

ra
ffi

c
to

 S
to

re
 D

at
a

[G
by

te
]

0

50

100

150

200

250

300

Days
5 10 15 20 25

Av
g.

 N
. o

f B
lo

ck
s

pe
r U

se
r

0

5

10

15

20

25

30

35

40

45

Fig. 7. Average daily behaviors of Dropbox users.

utilization. Since we expected a higher gap, we searched for
links, i.e., the creation through the Dropbox website of URIs
to publicly share files. We discovered that the high utilization
of the website has to be primarily ascribed to the creation of
a link, rather than for manually syncing contents via browser.
Therefore, a covert channel carried by the flow of information
of a client interface would not appear as an anomaly.

Concerning the distribution of users in the observed time-
frame, drops represent the weekends. In this case, spotting the
hidden flow of information via network analyzers could be
simpler, as the bulk of data reduces. Consequently, one might
imagine to use low-attention raising mechanisms, for instance
by spawning the covert channel when the network traffic is
assumed more consistent [38], [39]. A similar technique could
be also adopted to hide from a Warden on the file system.

Recalling that REN only relies on the alteration of an entry
in the metadata and does not require to update contents in
the cloud, its network footprint is hard to be spotted by a
Warden. In fact, on the average, it is required to inspect daily
up to 60 Gbytes of data, with peaks of more than 250 Gbytes,
as depicted in Figure 7(a). Instead, a Warden on the host could
reveal the data hiding process, as too many changes on the file
system could be suspicious. Recalling the values of td mea-
sured and reported in Table I, without additional impairments
imposed by the Internet, an average synchronization requires
about 3 seconds. Therefore, the software implementing the
covert channel should restore the original name within td as
to avoid that a Warden on the file system spots the change.
Unfortunately, this increases the burden on the mass storage,
e.g., due to continuous parse of the file system log, thus a
proper trade-off is needed.

As regard the undetectability of ALT, we recall that the
amount of Dropbox traffic depends on the actions performed
by the user. Therefore, we measured both the volumes of data
and the number of blocks stored by each user daily, as reported
in Figure 7. On the average, a single user stores 9 new blocks
per day, which is equal to ∼ 36 Mbytes of data (recalling that a
standard block is 4 Mbytes). Further investigations reveal that
such a value is characterized by a very high variance, making
hard to fix an effective threshold to decide whether a volume
of blocks represents an anomaly. It appears clear that users
prefer to do frequent and small changes to a file instead of
producing brand new contents. This can only partially rule the
throughput of data, as the optimized block transfer architecture
of Dropbox plays a major role.

Surely, steganographic bandwidth can be traded for de-

9

tectability, since larger values of F and smaller sizes C imply
more traffic observable over the network, and then, a more
aggressive user activity that can be spotted. However, the
more important trade-off is between the volume of secret
information sent daily and undetectability. In other words,
limiting the amount of secret data M to 100 bits would
make the resulting flow of chunks between the secret sender
and the secret receiver as indistinguishable from licit traffic.
Obviously, more bandwidth or a greater amount of information
can be exchanged by using multiple files, but this would inflate
the traffic per user, and hence make the channel easier to spot.

D. Comparison, Implementation Issues and Summary

As shown, ALT allows to trade network stealthiness in terms
of throughput by varying C, but this will have more impact
on the file system. Conversely, the amount of traffic produced
by REN is insensitive from L and the methods used to encode
the secret message M . In our trials, we successfully used
REN with character occurrence, alteration of the number of
spaces, character existence, word-to-symbol map, direct UTF-
8 encoding, and the number of character used (see, e.g., [40]
for a thorough discussion on text steganography). We point
out that such methods are general and can be mixed to mimic
the normal behavior of a user during his/her daily working
routine. Nevertheless, REN is robust against errors and losses
but, its bandwidth should be limited to avoid the detection by
observing the hosting file system.

As regards perspective implementation issues, the ALT
method is the more challenging, as it can lead to a tem-
porary corruption of the file used as the carrier. A simple
workaround to minimize the risk of opening such a file is
to use a low-attention raising technique, for instance enabling
the covert channel when the user is idle (see, e.g., [38] for an
information-hiding-capable malware using such approach on
Android devices). Another approach relies on using contents
that can not be corrupted tout court, such as multimedia
ones. As an example, chunks used to embed secrets could
be only limited to metadata or ID-tags of MPEG files. A
more complex, yet preferred, way is to add to REN and
ALT another layer of steganography. For instance, if the ALT
is applied to an image, one might further encode the bytes
of M within a pixel and considering also features of the
neighborhood area, as to avoid the detection due to artifacts
or corruptions [42]. Nevertheless, encrypting M could make
the covert channel more robust, as it prevents to reconstruct
the secret by recognizing the bytes changed in the file.

The computational overheads of both methods are quite
modest. Indeed, ALT and REN require a proper design to
not have too much impact on the hosting device, e.g., to
avoid detection due to performance degradations or excessive
battery drains. A conflicting design goal concerns the secret
sender, which should be implemented to be as fast as possible.
Unfortunately, this would require to have a spin-lock style
behavior leading to a high-detectable process. Therefore, over-
heads could be reduced by considering the td, which prevents
to reach theoretical bounds. In this case, the sender/receiver
could be put in a sort of sleep state during “idle” periods

due to delays. Concerning computational/storage overheads,
the REN only requires to perform simple operations on the file-
system and computing an hash, thus they can be considered
as negligible. A similar consideration could be made for the
ALT, even if it produces slightly increased costs in terms of
duplication and restoration of files.

To summarize, results clearly indicate that the proposed
approaches can covertly transfer data through the Internet and
can be used to implement a communication layer allowing
malware to hide its existence for long periods. If the amount
of daily exfiltrated data is small, their detection could be very
hard, thus they can be used for “long and slow” leakages [11].

VI. WARDENS AND MITIGATION TECHNIQUES

One of the primary goals of investigating covert channels
targeting Dropbox is the development of specific and effective
Wardens or mitigation techniques to prevent the misuse of
personal cloud storage services for information hiding attacks.
Preliminary, we mention that the development of general coun-
termeasures for such threats is still an open problem, as each
method has its own and poorly generalizable characteristics
[41]. This also reflects in many works proposing method-
agnostic Wardens addressing the network traffic of embedding
applications, rather than concentrating on the internals of the
steganographic exploit [12], [30], [31], [32], [33].

The REN and ALT methods offer a wide variety of possible
features to be used, as they range from the alteration of meta-
data producing a negligible amount of traffic to file changes
leading to a more aggressive network behavior. Considering a
Warden deployed on the host, it has to pursue two concurrent
goals: decide whether a change in the file indicates a secret
injection and detect the threat with a reasonable footprint in
terms of computational and I/O burden. In general, spotting
REN-like attacks within the host of the victim could be
feasible, while for the case of ALT the need for a continuous
parse of the file system log and check for differences among
multiple versions of the file would make preferable shifting the
detection in the network. We point out that only few works
in the literature try to directly spot a covert channel in the
device, with the exception of the colluding applications attack
or digital media steganography only targeting the content and
not a wider architecture (see, e.g., [12] and references therein).

Therefore, developing a Warden acting on the network could
be a more efficient solution. As discussed, all the exchanges
between the secret sender and the secret receiver are embedded
within flows of the metadata protocol. Since Dropbox uses
TLS-encrypted end-to-end conversations to transfer notifica-
tions, the use of DPI techniques is ineffective. As presented
in Section V-C, if the Warden has a “good” knowledge of
the block/user usage, this can be exploited to reveal the ALT
covert channel or to force the secret sender to slow as to
avoid to be detected as an anomaly. To this aim, an effective
Warden could take advantage of a specific behavior of the
Dropbox protocol. Especially, trials revealed that the number
of uploaded blocks is equal to the TLS Application Data
packets (i.e., Type 23, 0x17) sent from the Dropbox cloud
to the client interface with the push flag of the TCP set to true
(i.e., PSH = 1).

10

If not completely void, the bandwidth of channels targeting
personal cloud storage services can be mitigated via traffic
normalization. In fact, as presented in Section V-B, both
methods are highly sensitive to delays. Therefore, a possible
countermeasure introduces additional delays on the related
traffic flows as to limit the achieved steganographic bandwidth.
However, this is a delicate trade-off since it can degrade
the QoE perceived by the entire user population. Besides,
as discussed in Section IV-A, a malware wanting to attack
Dropbox can use the RSS flow to implement a secret-receiver-
side daemon. A simple approach could exploit the volume of
traffic generated by Web syndication. Since it can be assumed
as smaller if compared to the bulk of data generated by
the control and data planes of Dropbox, a Warden can use
syndication patterns as indicators to spot anomalies. Lastly,
an effective Warden should also consider the presence of low-
attention raising mechanisms.

Developing new mitigation techniques for threats using in-
formation hiding is part of our ongoing research. Specifically,
for the case of personal cloud storage applications, the most
promising approaches to be investigated are:

• energy-based: a recent field of research proposes the use
of energy consumption as a more general indicator to spot
anomalies [43]. This appears as particularly suited for
covert channels, since their detection is tightly coupled
with the specific information hiding method and poorly
generalizable. Therefore, a Warden in the host can be
used to reveal the malicious exploitation of personal cloud
storage services by monitoring its consumption [44].

• by design: owing to the popularity of personal cloud
storage applications, vendors like Dropbox, Google, Mi-
crosoft and Apple should consider to address information
hiding hazards from very early implementation stages,
as well as to deploy cloud-side countermeasures. As
an example, metadata servers could analyze the usage
pattern of an user and, if it deviates from a reference
value, the steganographic bandwidth can be reduced by
inflating td. This prevents to deploy a Warden on the
device consuming CPU and battery resources [35].

VII. CONCLUSIONS

In this paper, we investigated covert channels targeting
personal cloud storage services. We implemented two methods
and tested their performances in terms of bandwidth and
robustness in realistic scenarios. Results indicate that the
proposed covert channels can be used to stealthy transfer
information through the Internet. Specifically, personal cloud
storage can be used as a “communication service” for the next-
generation malware wanting to cloak its existence or covertly
exfiltrate data from the hosts of attacked users. For this reason,
the variety of data, together with the huge amount of traffic due
to the vast user population, rise security issues that can lead to
a Big Data problem. Therefore, understanding menaces arising
from information hiding could prevent the need of performing
resource-consuming traffic analysis or developing non-scalable
countermeasures.

Future research aims at implementing and testing a novel set
of countermeasures. Nevertheless, part of the ongoing research

is devoted to extend the investigation of attacks based on
information hiding to other cloud services.

REFERENCES

[1] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, A. Pras,
“Inside Dropbox: Understanding Personal Cloud Storage Services”, in
Proc. of the Internet Measurement Conf., ACM, New York, NY, USA,
pp. 481 - 494, 2012.

[2] S. Subashini, V. Kavitha, “A Survey on Security Issues in Service De-
livery Models of Cloud Computing”, Journal of Network and Computer
Applications, Vol. 34, No. 1, pp. 1 - 11, Jan. 2011.

[3] K. Ren, W. Cong, W. Qian, “Security Challenges for the Public Cloud”,
IEEE Internet Computing, no.1, vol. 16, pp. 69-73, Jan./Feb. 2012.

[4] Z. Xiao, Y. Xiao, “Security and Privacy in Cloud Computing”, IEEE
Communications Surveys & Tutorials, vol. 15, no. 2, pp. 843 - 859,
Second Quarter 2013.

[5] I. A. T. Hashem, I. Yaqoob, N. Badrul Anuar, S. Mokhtar, A. Gani,
S. U. Khan, “The Rise of Big Data on Cloud Computing: Review and
Open Research Issues”, Information Systems, vol. 47, pp. 98 - 115, Jan.
2015.

[6] D. Chen, H. Zhao, “Data Security and Privacy Protection Issues in
Cloud Computing”, in Proc of the Int. Conf. on Computer Science and
Electronics Engineering, Hangzhou, China, pp. 647-651, 2012.

[7] D. Zissis, D. Lekkas, “Addressing Cloud Computing Security Issues”,
Future Generation Computer Systems, Vol. 28, No. 3, pp. 583-592,
March 2012.

[8] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, L. Zhuang, “Enabling
Security in Cloud Storage SLAs with CloudProof”, In Proc. of the
USENIX Annual Technical Conf., vol. 242, June 2011.

[9] H. Chung, J. Park, S. Lee, C. Kang, “Digital Forensic Investigation of
Cloud Storage Services”, Digital Investigation, Vol. 9, No. 2, pp. 81 -
95, Nov. 2012.

[10] C. Wang, K. Ren, W. Lou, J. Li, “Toward Publicly Auditable Secure
Cloud Data Storage Services”, IEEE Network, vol. 24, no. 4, pp. 19-24,
2010.

[11] W. Mazurczyk, L. Caviglione, “Information Hiding as a Challenge
for Malware Detection”, IEEE Security & Privacy Magazine, Issue 2,
March/April 2015, pp. 89-93.

[12] W. Mazurczyk, L. Caviglione, “Steganography in Modern Smartphones
and Mitigation Techniques”, IEEE Communications Surveys & Tutori-
als, vol. 17, no. 1, pp. 334 - 357, First Quarter 2015.

[13] E. Zielinska, W. Mazurczyk, K. Szczypiorski, “Trends in Steganogra-
phy”, Comms. of the ACM, vol. 57, no. 3, pp. 86 - 95, Mar. 2014.

[14] S. Katzenbeisser, F. Peticolas, “Information Hiding”, Artech House
Publishers, Norwood, United States, 2nd Edition, Dec. 2015.

[15] D. Harnik, B. Pinkas, A. Shulman-Peleg, “Side Channels in Cloud
Services: Deduplication in Cloud Storage”, IEEE Security & Privacy,
vol. 8, no. 6, pp. 40 - 47, Nov. - Dec. 2010.

[16] S. Halevi, D. Harnik, B. Pinkas, A. Shulman-Peleg, “Proofs of Owner-
ship in Remote Storage Systems”, in Proc. of the 18th ACM Conf. on
Computer and Communications Security, pp. 491 - 500, 2011.

[17] T. Ristenpart, E. Tromer, H. Shacham, S. Savage, “Hey, you, get off
of my cloud: Exploring Information Leakage in third-party Compute
Clouds”, in Proc. of the 16th ACM Conf. in Computing and Commu-
nication Security, Chicago, IL, USA, 2009, pp. 199 - 212.

[18] W. Hu, Y. Tao, J. N. Matthews, “The Good, the bad and the ugly of
Consumer Cloud Storage”, ACM SIGOPS Operating Systems Review,
vol. 44, no. 3, pp. 110 - 115, 2010.

[19] I. Drago, E. Bocchi, M. Mellia, H. Slatman, A. Pras, “Benchmarking
Personal Cloud Storage”, in Proc. of the 2013 Conf. on Internet
Measurement, pp. 205 - 212, Oct. 2013, ACM.

[20] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, E. Weippl, “Dark
Clouds on the Horizon: Using Cloud Storage as Attack Vector and
Online Slack Space”, in Proc. of the 20th USENIX Conf. on Security,
2011.

[21] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Y. Dai, “Efficient
Batched Synchronization in Dropbox-like Cloud Storage Services”, in
D. Eyers, S. Karsten (Eds.), Middleware 2013: ACM/IFIP/USENIX 14th
Int. Middleware Conf. , pp. 307-327, 2013, Springer Berlin Heidelberg.

[22] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai, Z.-L.
Zhang, “Towards Network-level Efficiency for Cloud Storage Services”,
in Proc. of the 2014 Internet Measurement Conf., pp. 115 - 128, 2014.

[23] P. Shlane, M. Huang, G. Wallace, W. Hsu, “WAN-Optimized Replication
of Backup Datasets Using Stream-Informed Delta Compression”, ACM
Transactions on Storage, vol. 8, no. 4, pp. 1 - 13, 2012.

11

[24] The librsync homepage, http://librsync.sourceforge.net,
last accessed: March 2016.

[25] F. Petitcolas, R. Anderson, M. Kuhn, “Information Hiding: A survey”,
Proc. of the IEEE, vol. 87, no. 7, pp. 1062 - 1078, Jul. 1999.

[26] W. Mazurczyk, S. Wendzel, S. Zander, A. Houmansadr, K. Szczypi-
orski, “Information Hiding in Communication Networks: Fundamentals,
Mechanisms, Applications, and Countermeasures”, Wiley-IEEE Press,
April 2016.

[27] G. J. Simmons, “The Prisoner‘s Problem and the Subliminal Channel”,
in Proc. of CRYPTO, 1983, pp. 51 - 67.

[28] S. Wendzel, W. Mazurczyk, L. Caviglione, M. Meier, “Hidden and
Uncontrolled - on the Emergence of Network Steganographic Threats”,
in Proc. of ISSE 2014 Securing Electronic Business Processes, pp. 123
- 133, Springer, Fachmedien Wiesbaden.

[29] J. Fridrich, “Applications of Data Hiding in Digital Images”, in Proc. of
5th Int. Symp. on Signal Processing and Applications, pp. 1 - 9, 1999.

[30] M. H. Kang, I. S. Moskowitz, “A Pump for Rapid, Reliable, Secure
Communication”, in Proc. of the 1st ACM Conf. on Computer and
Communication Security, Fairfax, USA, pp. 119 - 129, 1993.

[31] S. Cabuk, C. E. Brodley, C. Shields, “IP Covert Channel Detection”,
ACM Transactions on Information and System Security, No. 12, Vol. 4,
pp. 22 - 29, April 2009.

[32] V. Berk, A. Giani, G. Cybenko, “Detection of Covert Channel Encoding
in Network Packet Delays”, Technical Report, Dartmouth College, 200

[33] S. Gianvecchio, H. Wang, “Detecting Covert Timing Channels: An
Entropy-Based Approach”, in Proc. of 14th ACM Conf. on Computer
and Communication Security, pp. 307- 316, Alexandria, USA, 2007.

[34] D. E. Taylor, “Survey and Taxonomy of Packet Classification Tech-
niques”, ACM Computing Surveys, vol. 37, no. 3, pp. 238-275, 2005.

[35] L. Caviglione, W. Mazurczyk, “Understanding Information Hiding in
iOS”, IEEE Computer, vol. 48, no. 1, pp. 62 - 65, Jan. 2015.

[36] D. Kholia, P. Wegrzyn, “Looking Inside the (Drop) Box”, in Proc. of
the 7th USENIX Conf. on Offensive Technologies, pp. 1 - 9, Berkeley,
CA, USA, 2013.

[37] L. Caviglione, “Can Satellites face Trends? The case of Web 2.0”, Int.
Workshop on Satellite and Space Communications, pp. 446 - 450, 2009.

[38] J.-F. Lalande, S. Wendzel, “Hiding Privacy Leaks in Android Applica-
tions Using low-Attention Raising Covert Channels”, in Proc. of the Int.
Conf. on Availability, Reliability and Security, pp. 701-710, 2013.

[39] R. Andriatsimandefitra, V. V. T. Tong, “Detection and Identification of
Android Malware Based on Information Flow Monitoring”, in Proc. of
the 2nd Int. Conf. on Cyber Security in Cloud Computing, pp. 1 - 4,
2015.

[40] K. Bennett, “Linguistic Steganography: Survey, Analysis, Robustness
Concerns for Hiding Information in Text”, Purdue University, CERIAS
Tech. Rep. 13, May 2004.

[41] J. J. Harmsen, W. A. Pearlman,“Capacity of Steganographic Channels”,
in Proc. of the 7th Workshop Multimedia Security, New York, NY, USA,
pp. 11 - 24, Aug. 2005.

[42] W.-J. Chen, C.-C. Chang, T. H. N. Le, “High Payload Steganography
Mechanism Using Hybrid Edge Detector”, Expert System Applications,
vol. 37, no. 4, pp. 3292 - 3301, Apr. 2010.

[43] A. Merlo, M. Migliardi, L. Caviglione, “A Survey on Energy-Aware
Security Mechanisms”, Pervasive and Mobile Computing, vol. 24, pp.
77 - 90, Dec. 2015.

[44] L. Caviglione, M. Gaggero, J. F. Lalande, W. Mazurczyk, M. Urbański,
“Seeing the Unseen: Revealing Mobile Malware Hidden Communi-
cations via Energy Consumption and Artificial Intelligence”, IEEE
Transactions on Information Forensics and Security, vol. 11, no. 4, pp.
799 - 810, April 2016.

Luca Caviglione received the Ph.D. degree in elec-
tronic and computer engineering from the University
of Genoa, Italy. He is a Researcher at the Institute of
Intelligent Systems for Automation of the National
Research Council of Italy. His research interests in-
clude p2p systems, wireless communications, cloud
architectures, and network security. He is author or
co-author of more than 100 academic publications,
and several patents. He has been involved in research
projects funded by ESA, EU and MIUR. He is a
Work Group Leader of the Italian IPv6 Task Force, a

Contract Professor in the field of p2p networking, and a Professional Engineer.
He is involved in the technical program committee of many international
conferences, and regularly serves as a reviewer for the major international
journals. From 2011, he is an Associate Editor for the Transactions on
Emerging Telecommunications Technologies, Wiley.

AUTHORS BIOGRAPHY

Name: Maciej Podolski
Born: New York on 8.11.1991
Field of study: Electrical and computer systems
engineering
Major: Telecommunications

I always had an interest in the technology. .In 2010 I have graduated from high
school passing advance mathematics and physics exams. For my higher education
I have chosen Warsaw University of Technology. During my studies I had the
opportunity to familiarize with many different technologies and learn from the
best.

I attended the studies in English which meant meeting lot of interesting people
who came for the student exchange from all of the world. It was a pleasure to
work in diverse environment, learn about other cultures and promote my own.

During my studies I have joined the student security group (KNBI). Till then
I was just a cyber-security enthusiast, the lectures organized by the group gave me
a look inside the real life practices and most recent threats.

Currently I’m staring a graduate program as a member of Technical Services
team in Cisco. I will be working in security domain as my specialization will be
Authentication Authorization and Accounting.

Maciej Podolski holds B.Sc. (2003) in Electronic
and Computer Engineering with major in Telecom-
munications from Warsaw University of Technology
(WUT) in Poland. He has been passionate about
cyber security since early university years. Currently
he works in security field. He is a member of
Cisco TAC Security team, where he helps securing
customers networks every day and resolves complex
platform issues..

Wojciech Mazurczyk (SM‘13) received the B.Sc.,
M.Sc., Ph.D. (Hons.), and D.Sc. (Habilitation) de-
grees in telecommunications from the Warsaw Uni-
versity of Technology (WUT), Warsaw, Poland, in
2003, 2004, 2009, and 2014, respectively. He is
currently an Associate Professor with the Institute
of Telecommunications, WUT, where he is the
Head of the Bio-Inspired Security Research Group
(bsrg.tele.pw.edu.pl). His research interests include
bioinspired cybersecurity and networking, informa-
tion hiding, and network security. He is involved in

the technical program committee of many international conferences, including
the IEEE INFOCOM, the IEEE GLOBECOM, the IEEE ICC, and ACSAC. He
also serves as a reviewer for major international magazines and journals. Since
2013, he has been an Associate Technical Editor of the IEEE Communications
Magazine (IEEE Comsoc).

Massimo Ianigro received the M.Sc. degree in
Computer Science in 1992, from the University of
Bari. Before joining the National Research Council
of Italy, he has been awarded of research contracts
from SGS Thomson Microelectronics and Digital
Equipment Corp. on various themes (for instance,
optical flow reconstruction, robotics, high perfor-
mance computing and networking). During 1995
he has worked at Manchester University in the
Computer Graphics Unit. He has been teaching in
several master and PhD courses and he is responsible

for the networking infrastructure and telematic services of the CNR Bari
area. Also, he is a member of the GARR-CERT (Computer Emergency
Response Team of the nation-wide network of academic institutions) and
he is an expert appointed by Italian law enforcement agencies in many
computer forensic cases. His current research interests include information
and communication technologies, robotics, computer and network security,
large scale infrastructures, computer forensics.

