CONTENT SECURITY POLICY

IN MODERN INTERNET BROWSERS



AGENDA

e Cross-Site Scripting
e CSP: Definition

e CSP: Features

e CSP: Examples

e Future of CSP

e Conclusions



CROSS-SITE SCRIPTING (XSS) - 1/3

“Cross-site scripting (XSS) is a type of computer security
vulnerability typically found in Web applications. XSS enables
attackers to inject client-side script into Web pages viewed
by other users. A cross-site scripting vulnerability may
be used by attackers to bypass access controls such

as the same origin policy.” - via VV



CROSS-SITE SCRIPTING (XSS) - 2/3

ATTACKER 1

E-mail message with malicious
Reflected XS5 link or HTML form.

VICTIM

E-mail client

Victim enters malicious
link, prepared request is
sended to webserver.

WEB APPLICATION SERVER 3

Webserver does not filter
malicious parameters and
responds with HTML page,
which contains malicious
code (eg. JavaScript code).

Internet browser

Browser executes
malicious code received
from webserver.




CROSS-SITE SCRIPTING (XSS) - 3/3

According to OVVASE XSS is one of the most common type
of web application vulnerability.

There is promising new defense that can significantly reduce
the risk and impact of XSS attacks in modern browsers:

Content Security Policy (CSP).



CSP: DEFINITION

Content Security Policy is an VV>C specification offering
the possibility to instruct the client browser from which
location and/or which type of resources are allowed to be
loaded. To define a loading behavior, the CSP specification
use “directive” where a directive define a loading behavior
for a target resource type.



CSP: HOW IT WORKS?

CSP defines the Content-Security-Policy HTTP header that

allows you to create a whitelist of sources of trusted

content, and instructs the browser to only execute or render

resources from those sources. Even if an attacker can find

d

hole through which to inject script, the script won’t matc
the whitelist, and therefore won't be executed.

N



CSP: CAN 1 USE IT?

5 versions back
4 versions back
3 versions back
2 versions back
Previous version

Current

Near future
Farther future

Source:

IE Firefox Chrome
ST 15.0 -—=21.0 webict S
6.0 16.0 —-—122.0 webict
7.0 17.0 1230 webict SR
8.0 18.0 Wit 124.0 webik 520
9.0 19.0 W 95.0 2l
10.0 E20.0 mx126.0 6.0
21.0 w—t127.0
22.0 “E128.0

Safari Opera

11.0
11.1
LIeE
11.6
webkit 12.0

el

http://caniuse.com/contentsecuritypolicy



CSP: DEFINITION

Content Security Policy is an W3C specification offering the
possibility to instruct the client browser from which location
and/or which type of resources are allowed to be loaded. To
define a loading behavior, the CSP specification use
directive where a directive define a loading behavior for a
target resource type.




CSP: USAGE - FIRST VIEW

Pattern:

Content-Security-Policy: directive locations/resources

Examples:

Content-Security-Policy: script-src https://apis.google.com



(SP: BROWSER BEHAVIOR

Policy:

Content-Security-Policy: script-src 'self' https://apis.google.com

Script inclusion:

<script src="http://evil.com/evil.js"></script>

Result:



CSP: AVAILABLE DIRECTIVES

e script-src: limits the origins from which scripts can be loaded,
e frame-src: lists the origins that can be embedded as frames,

e connect-src: limits the origins to which you can connect (via XHR,
WebSockets, and EventSource).

¢ img-src: defines the origins from which images can be loaded.

e object-src: allows control over Flash and other plugins.

e style-src: limits the origins from which images can be loaded,

e media-src: restricts the origins allowed to deliver video and audio.
e font-src: specifies the origins that can serve web fonts.

e default-src: default policy if case some of the above is not set.



(SP: RESOURCE LIST KEYWORDS

¢ nhone: matches nothing,
e self: matches the current origin, but not its subdomains,
e unsafe-inline: allows inline JavaScript and CSS,

e unsafe-eval: allows text-to-JavaScript mechanisms like JS
eval function.



CSP BLUBKING INLINE SCRIPTS

on onclick="inli >Click m

Content Security Pollcy by default blocks this kind of
inclusion - perfect XSS defence!



CSP: BLOCKING JS EVAL FUNCTION

Let assume we have a chunk of code like this:

var parsed obj = eval (" (" + json text + ")");

And we serve JSON object like this:

{ "name": alert ("Hi everyone!") 1}

Content Security Policy by default blocks eval function calls.
JSON. parse() >> eval ()



REPORTING 1/2

POLICY VIOLATION REPORTING
Policy with reposting:

Content-Security-Policy:
default-src 'self';
report-uri /csp report parser;

Report example:

{
"csp-report": {
"document-uri": "http://example.org/page.html",
"referrer": "http://evil.example.com/",
"blocked-uri": "http://evil.example.com/evil.js",
"violated-directive": "script-src 'self' https://apis.google.com",
"original-policy": " (...) report-uri /csp report parser"



REPORTING 2/2

CONTENT-SECURITY-POLICY-REPORT-ONLY HEADER

The policy specified in report-only mode won't block
restricted resources, but it will send violation reports to the
location you specify. This is a great way to evaluate the
effect of changes to an application’s CSP.

Content-Security-Policy-Report-Only:
default-src 'self';
report-uri /csp report parser;



CSP: USAGE - SECOND VIEW

Examples:

Content-Security-Policy: script-src https://apis.google.com
Content-Security-Policy: script-src 'self' https://apis.google.com
Content-Security-Policy: frame-src *://cdn.mydomain.com:*

Content-Security-Policy:
script-src
'self'
http://cdn.mydomain.com: *
http://adserver. .example.com;
frame—-src
*://yourdomain.com: *;
object-src
"'none';
connect—-src
https:;



CSP: EXAMPLES

CASE#1: SOCIAL MEDIA BUTTONS - 1/3

J




CSP: EXAMPLES

CASE#1: SOCIAL MEDIA BUTTONS - 2/3

e Google +1 button:
includesascri pt from hitps://apis.google.com and

embeds ani f r ane from Nttps

e Facebook Like button:
embeds ani f r ane from Ntips:/facebo

e Twitter Tweet button:
includesascri pt from Ntitps:/platiorm. ~r.com and

embeds ani f r ane from nttps:/platiorm



CSP: EXAMPLES

CASE#1: SOCIAL MEDIA BUTTONS - 3/3

The final policy:

Content-Security-Policy:

script-src
'self'
https://apis.google.com
https://platform.twitter.com;

frame-src
https://plusone.google.com
https://facebook.com
https://platform.twitter.com



CSP: EXAMPLES

CASE#2: SSL ONLY -1/2

Let assume some webpage admin wants to load all external
resources via secure channel. Rewriting large parts of code
could be very difficult and - in some cases - even impossible.



CSP: EXAMPLES

CASE#2: SSL ONLY - 2/2

The final policy:

Content-Security-Policy:
default-src
https:;
script-src
https: 'unsafe-inline';
style-src
https: 'unsafe-inline'



FUTURE OF CSP

CSP 1.1 DRAFT

New version of document is being actively discussed and
browser vendors are hard at work solidifying and improving
their implementations.



FUTURE OF CSP

DOM API

The ability to query a page's current policy via JavaScript,
which will enable you to make runtime decisions about
implementations, and gracefully settle on something that
will work for the environment in which your code finds itself.

Eg.if eval functionis unavailable code might implement
some feature differently.



FUTURE OF CSP

NEW DIRECTIVES

e script-nonce: enables inline script only for explicitly
specified script elements,

¢ plugin-types: limits the MIME types of content for which
plugins could be loaded,

e form-action: allows form submission to only specific
origins.



CONCLUSIONS

1. Allows to control script and style inclusions

2. Blocks inline scripts and styles

3. Easy to implement

4. Reporting mode as a tool for developers

5. Can be implemented in some part of application

6. Available in main browsers (~68% of Internet users)



LINKS

http:/www.w3.org/TR/CSP/
http.//www.w3.0org/TR/CSP11/
https.//www.owasp.org/index.php/Content_Security_Policy

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

https://developer.mozilla.org/en-US/docs/Security/CSP/Introducing_Content_Security_Policy

http://developer.chrome.com/extensions/contentSecurityPolicy.html

http://lists.w3.org/Archives/Public/public-webappsec/

http:/listsw3.org/Archives/Public/public-webappsec/2012Nov/att-0112
/Web_Application_Security Working_Group.htm

o= — ==

http://falcon80.com/JSON/parsingJSON.html
https://en.wikipedia.org/wiki/Cross-site_scripting

http://erlend.oftedal.no/blog/csp/readiness/

http://caniuse.com/contentsecuritypolicy




THE END

Questions?

Presenter



