Trust, Reputation and Fairness in Online Auctions

Adam Wierzbicki 21/11/2006

- Background
 - Online auctions
 - Trust management
 - Reputation systems
- An example of a new reputation algorithm and its evaluation
- A second example of negative discrimination
- Changing existing definitions of trust management and trust

- E-commerce market growing at a rate of about 25%
- Online auctions generate 15% of all online sales
- eBay has 56 million active users
 - Annual transactions surpass \$23 billion
 - About 1 million transactions daily
- Online auctions account for over 40% Internet fraud
 - This is the most popular type of Internet fraud
 - Annual loss about \$14 million

- How can an e-commerce trader know what to expect about the behavior of his partner in a transaction, when he has no record of previous encounters?
- More generally:

How can an agent determine what to expect regarding the behavior of other agents under uncertainty?

- <u>Reputation</u>: perception that an agent creates through past actions about its intentions and norms
- A reputation system is a trust management system that uses reputation
- Examples of reputation systems in e-commerce:
 - eBay
 - Allegro
 - Amazon

Indirect, propagated reputation: majority principle

- Based on feedback
 - After a transaction, traders post feedbacks
 - Feedback can be positive, negative or neutral
- Risk assymetry of buyers and sellers
 - Sellers have little risk, since they require advance payment
 - Buyers have high risk, since they may not receive goods or receive goods of poor quality
 - Result: buyer reputation is less relevant to sellers than seller reputation is to buyers
- Experience assymetry of buyers and sellers
 - Sellers are usually longer in business and participate in more transactions than buyers
 - Thus, they are better known than buyers

- Vulnerable to:
 - First-time cheating
 - Coalition attacks
 - Discrimination attacks
- Weakness of feedback systems
 - Many users do not post negative feedbacks
 - Out of inexperience or fear of retaliation
 - This is especially relevant for buyers
 - Frequently, all feedback is missing

- The simplest algorithms are used in practice (eBay)
- Reputation is a proportion of positive feedbacks to all feedbacks about an agent
 - Drawbacks: is not context-dependent
 - Is vulnerable to all known reputation weaknesses
- Frequently, reputation is not computed. Users are provided with a list of all or most recent feedbacks about another user.
 - Reputation is evaluated implicitly by a human

- Paradigm of Prisoner's Dilemma
 - In this game, the sum of payoffs is highest when no one cheats
- Utilitarian concept: a reputation system is good if a sum of all agents' utilities is highest
 - This type of evaluation ignores the possibilities of cheating present in reputation systems
- Our claim: a reputation (trust management) system should promote fair agent behavior!

- Background
 - Online auctions
 - Trust management
 - Reputation systems
- An example of a new reputation algorithm and its evaluation
- A second example of negative discrimination
- Changing existing definitions of trust management and trust

A new reputation algorithm with implicit feedbacks

The concept of implicit feedbacks

- A user may send no feedback but mean a negative feedback
- In Allegro, over 98% received feedbacks are positive
- Do implicit (negative) feedbacks exist?
 - About 30% of transactions have no feedback
 - Are these implicit feedbacks?

- Majority strategy: if a user usually sends feedback, the omission of feedback could be an implicit feedback
 - There are very few users who continue to send few feedbacks. Thus, for experienced users, the lack of feedback is an implicit (negative) feedback
- Ochini (cosine) coefficient strategy: calculate a similarity of a user's feedback profile to the profile of a hypothetical user who never gives feedback
 - Results: less than 10% users are similar
 - Over 90% users are dissimilar. These users provide implicit (negative) feedbacks

A reputation algorithm that uses implicit feedback

- A simple extension of eBay's algorithm
- For every user, let:
 - *n* : number of transactions
 - *m*: number of feedbacks
 - *m*⁺: number of positive feedbacks
 - $m^2 = n m$: number of missing feedbacks
 - $\rho = m^+ / (\alpha m^- + m)$: user's reputation
- If α is zero, then we have eBay's algorithm
- In practice, need to have an exponential smoothing of ρ

Evaluation of the reputation algorithm – the simulator

- Reputation system simulated faithfully
 - But, only positive or negative reports
- User behavior is realistic
 - Users take into account reputation of partners
 - Users decide whether to report, depending on type of report
 - Users can cheat in reports, as well as in transactions
 - Users can use transaction strategies that depend on known history
- Auction has been simplified
 - Random choice of partner depending on reputation, from a small set
 - Transaction simulated by a game: PD or zero-sum

- Each simulated agent is characterized by:
 - His game strategy and its parameters
 - Tit-for-tat with reputation threshold, usually 0.5
 - Random cheating, usually 0.6
 - Probabilities of cheating in reports
- The reputation system can use various algorithms:
 - Simple ratio of positive reports to all reports
 - Algorithm with implicit feedbacks, for various values of α

- Agent set: 300 agents divided into two groups:
 - "Good agents": 66% of all agents
 - Bad agents": the rest
 - Two reporting behaviors:
 - Perfect feedback
 - Poor feedback: good reports with probability 0.66, bad reports with probability 0.05
- 10 simulation runs
 - Present averages and 95% confidence intervals

- Use fairness to evaluate the algorithms!
- Criteria:
 - Average payoff of "good" agent
 - Average payoff of "bad" agent
 - Fairness of payoffs of "good" agents
 - Evaluated using the Gini coefficient

	Cor	nparis	on of I	reputa	ation al	gorithr
		Good agents' avg. payoff	Bad agents' avg. payoff	Gini of goo agents' payoffs	od 95% confi Gini	idence interva Payoff
Perfect reports		101,76	22,66	0,70	0,63-0,76	100-103,5
Poor repo alpha=0	orts,	96,45	54,20	0,51	0,45-0,58	93,6-99,3
Poor repo alpha=0.0	orts, 5	99,08	23,03	0,75	0,66-0,85	96,1-102
Poor repo alpha=0.1	orts,	100,41	23,52	0,67	0,58-0,76	98,8-101,9
Poor repo alpha=0.2	orts,	100,74	22,64	0,74	0,66-0,82	98-103,4
Poor repo alpha=0.3	orts,	99,72	22,60	0,83	0,73-0,92	97,7-101,7

Conclusion: Should take fairness into account!

- Background
 - Online auctions
 - Trust management
 - Reputation systems
- An example of a new reputation algorithm and its evaluation
- A second example of negative discrimination
- Changing existing definitions of trust management and trust

A second experiment – the power of negative discrimination

- Aim of experiment: demonstrate effect of abusing reputation on fairness
- Negative discrimination: cheating a minority of selected agents
- Real-world parallel: newcomers enter a market of hostile agents
 - Old agents always cooperate with each other
 - Old agents always cheat newcomers
 - Newcomers are a minority

- 10 agents
- Agents 1, 2, 3 are newcomers
 - Play Reputation Tit-for-tat with everyone
- Rest of agents are old agents
 - Cheat agents 1, 2, 3, cooperate with each other scenario 1 (discrimination)
 - Play Reputation Tit-for-tat scenario 2 (cooperation)
- Perfect reporting in all scenarios
- 200 transactions, 10 iterations
 - Maximum outcome for all in PD: 1200

Criterion: total payoff of old agents

	Discrimination	Cooperation
Average	867	847
Conf. Interval 95%	822-910	838-856

- Conclusion: it pays off to cheat
 - Usually, the payoff is much higher than the average

- Reputation of old and new agents under discrimination scenario
 - In cooperation scenario, all agents have reputation of 100 (maximum)

	New agents	Old agents
Average	30	75
Conf. Interval 95%	24-34	72-78

- Conclusion: old agents have higher reputation
 - Because they cheat a minority

- Fairness is a big issue in reputation systems
- Better reputation algorithms are needed
 - A solution for negative discrimination: controlled anonymity (Dellarocas)
- What to do about the iterated PD?
 - Here, the total payoff drops
 - But is that enough to demonstrate fairness problems?
 - Would it be better to use a zero-sum game?

- Background
 - Online auctions
 - Trust management
 - Reputation systems
- An example of a new reputation algorithm and its evaluation
- A second example of negative discrimination
- Changing existing definitions of trust management and trust

- Trust definition of Gambetta, 1988: Trust is the subjective probability by which an agent A expects another agent B to perform a particular action, on which A's welfare depends.
- New trust definition:

Trust is the subjective probability by which an agent A expects another agent B to behave fairly.

Conclusion: reconsider definition of trust management

- Trust management problem:
 - How can an agent determine whether another agent will behave fairly under uncertainty?
- How to promote fairness in a community?
 - …in a global, electronic community?
 - e-auctions, e-commerce, e-games, P2P apps
 - ...of selfish, deceitful peers?
 - ...in an environment without trusted central control?

- How is fairness defined?
 - Very generally: obeying a set of predefined rules (contract, agreement)
 - Less generally: obeying a set of social norms
 - Trust as a normative notion: Elgesem, 2006
 - Our contribution:
 - practical use of fairness in evaluation of trust management algorithms/systems
 - Definition of trust in electronic systems, not just social (or AI) systems

- Previous definitions of trust presupposed a situation of uncertainty (risk)
- The new definition does also, but:
 - Consider a transaction with an outcome dependent on random factors
 - Consider a transaction where the partners may be dissatisfied even if both are fair (for example, poor bidding strategies)
- These are examples of situations that require consideration of fairness to evaluate trust

- D. Elgesem, <u>Normative Structures in Trust Management</u>, Trust Management (iTrust 2006), Springer, LNCS 3986, 2006
- C. Dellarocas, <u>Immunizing Online Reputation Reporting Systems</u> <u>Against Unfair Ratings and Discriminatory Behavior</u>, In Proc. of the 2nd ACM Conference on Electronic Commerce, Minneapolis, MN, USA, October 17-20, 2000
- M. Morzy and A. Wierzbicki, <u>The Sound of Silence: Mining</u> <u>Implicit Feedbacks to Compute Reputation</u>, to appear in Proc. 2nd international Workshop on Internet & Network Economics (WINE'06), Springer, LNCS, 2006