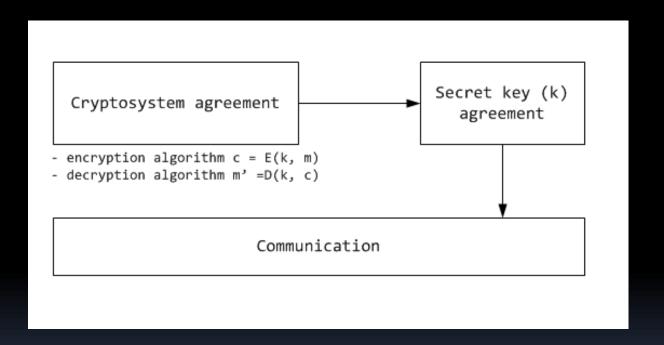
DIGITAL SIGNATURE

INTRODUCTION, CLASSIFICATION, DELEGATION

M.SC. BARTŁOMIEJ SŁOTA


ABSTRACT

- Conventional cryptography
- Diffie Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes

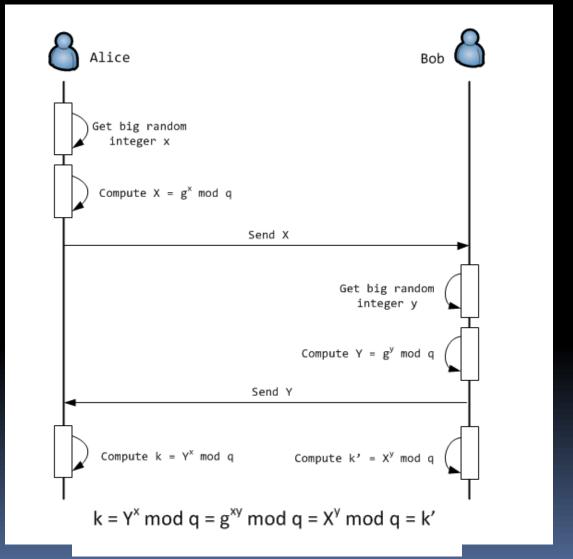
ABSTRACT

- Conventional cryptography
- Diffie Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes

Conventional cryptography

Conventional cryptography

- Key must be transmitted by means of a secure channel (courier/meeting)
- If compromised key may be misused (decryption of real messages, encryption of false messages, etc.)
- There's no way to conclude from the ciphertext who was the sender (Bob can send message to himself) – source of forgery
- Key management n(n-1)/2

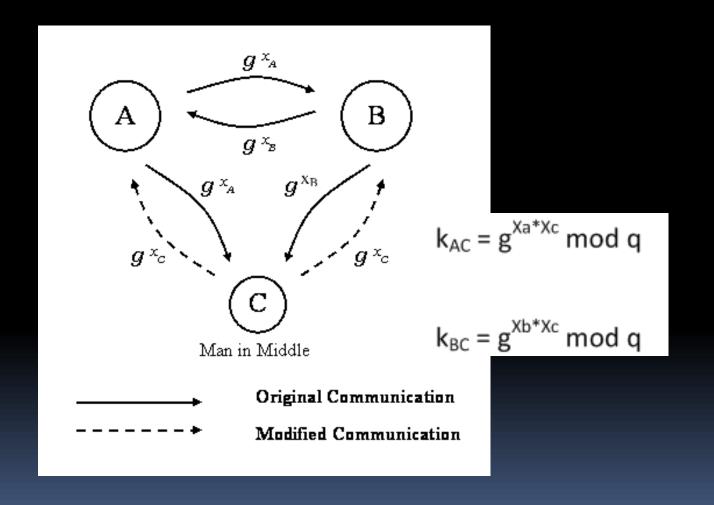

ABSTRACT

- Conventional cryptography
- Diffie Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes

Diffie-Hellman concept

- Exponential key agreement protocol
- First known public key algorithm
- Cryptosystem
 - $\ ^{\ }$ q power of a prime number, defines the order of the finite field F_{q}
 - g generator of the multiplicative group of order q-1
- Security based on discrele logarithm problem

Diffie-Hellman concept

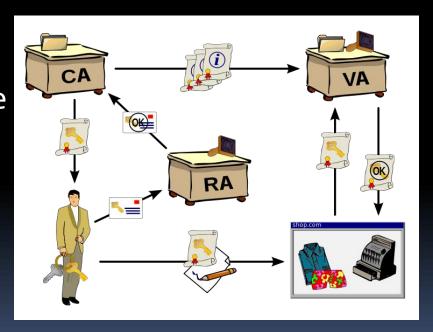

ABSTRACT

- Conventional cryptography
- Diffie Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes

Man-in-the-middle attack

- DH cannot stand against MIM attack
- Intruder Mallory may interrupt the communication during key exchange
- Cryptosystem = DH cryptosystem
 - p, q, F_q

Man-in-the-middle attack



ABSTRACT

- Conventional cryptography
- Diffie Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes

Public key cryptography

- Success of the MIM attack sides cannot be sure whose key they are using
- Remedy?
 - Trusted authority
 - Digital certificate

ABSTRACT

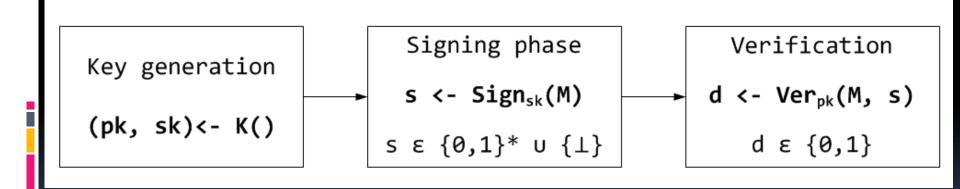
- Conventional cryptography
- Diffie Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes

Hash functions

- Mapping any length messages to fixed length message digests
- $\bullet h = H(M)$
 - h message digest
 - M message of any length
- Features
 - Having M it is easy to compute h = H(M)
 - One way property
 - Collision resistance property

ABSTRACT

- Conventional cryptography
- Diffie Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes


16

Digital signature

- Electronic analogue to hand written signature
- Provided security services:
 - Authentication
 - Non-repudation
 - Integrity
- Messages with signature can be encrypted and time-stamped

Digital signature

- Digital signature scheme:
 - The base of every signature algorithm
 - Consists of three phases

Digital signature - RSA

- Rivest, Shamir, Adleman
- Security based on the IF problem

Key generation

- generate two large distinct random primes p and q
- compute n = p*q and Euler function $\varphi(n) = (p-1)(q-1)$
- select a random integer e, so that 1 < e < φ(n), such that gcd(e, fi(n)) = 1
- compute d, so that 1 <d < $\phi(n)$, such that ed = 1 mod $\phi(n)$. In other words, d = e^{-1} mod $\phi(n)$ is the inverse of e.
- (e, n) public key
- (d, n) private key
- message space M and ciphertext space C is Z_n = {0, 1, 2, ..., n-1}

Digital signature - RSA

Signature generation

- uses private key
- compute signature s = md mod n

Signature verification

- uses signer's public key (e, n)
- compute m' = se mod n = med mod n
- verify if m' = m

Digital signature - RSA

Proof

- let's remind the Euler theorem:
 - if a and n are relatively prime, then a $^{\phi(n)}$ = 1 mod n
- moreover: ed $\equiv 1 \mod \varphi(n) \Rightarrow ed = 1 + x * \varphi(n)$
- so: $m^{ed} = m * m * m^{x*\phi(n)} = m * 1^x = m \mod n$

Digital signature - ElGamal

Security based on the DL problem

Key generation

- Take a large prime number p defining a finite field Zp
- Find g generator of a multiplicative group Z*p
- compute random secret number x, 1 < x < p
- compute y = g mod p
- {p, g, y} public key
- x private key

Digital signature - ElGamal

Signature generation

- uses private key x, and cryptosystem parameters (p, g)
- select a random integer k, 1 < k < p-1 such that gcd(k, p-1) = 1</p>
- compute r = gk mod p and k-1 mod (p-1)
- compute $s = k^{-1} [m x*r] \mod (p-1)$
- (r, s, m) signature

Signature verification

- uses public key {p, g, y}
- check if 1 < r < (p-1)
- compute $v_1 = y^r * r^s \mod p$
- compute $v_2 = g^m \mod p$
- the signature is valid if and only if $v_1 = v_2$

Digital signature - ElGamal

Proof

$$v_1 = y^r * r^s \bmod p = g^{x*r} * r^{k^{-1}*[m-x*r]} \bmod p$$
$$= g^{x*r} * g^{k*k^{-1}*[m-x*r]} \bmod p = g^m \bmod p = v_2$$

Signature classification

- 1) By mathematical problem on which their security is based
 - Based on IF problem
 - Based on DL problem

- 2) By the signer identification method
 - Certificate based signatures
 - ID-based signatures

Signature classification

- 3) By the usage of randomization
 - randomized schemes
 - deterministic schemes

- 4) By the ability to recover message
 - Schemes with appendix
 - TMR (Total Message Recovery)
 - PMR (Partial Message Recovery)

Signature classification

- Signature schemes may belong to many of presented groups
- Most of them have special features another way of classification
- They still use RSA or ElGamal signature scheme

Blind signatures

- Introduced by D.Chaum
- The signer knows neither the message nor its signature
- Alice generates blinds message m using blinding function m' = f(m) and sends to BOB
- Bob signs s' = Sign(m') and sends the result back to Alice
- Alice computes the reverse blinding function f'(s') = s and gets the signature
- Usage: e-money, e-voting

Undeniable signatures

- Proposed by David Chaum and Hans van Antwerpen
- Digital signatures can be copied exactly
- Verification is possible only with the interaction with the signer
 - only authorized entities can access the document to verify the signature
 - signer cannot deny a valid signature (disavowal protocol)

Designated Confirmer Signatures

- Compromise between self-authenticating signatures and undeniable signatures
- A designated confirmer allows certain designated parties to confirm the authenticity at any time without asking signer
- Others are not able to verify signature without the aid of designated parties or the signer himself

Directed Signatures

- Proposed by Lim and Lee
- Self-authentication property is not suitable for applications like signing personal information (tax bills, prescriptions, etc.)
- Signer sends signed message m to the designated verifier (i.e. patient) while others know nothing on the origin and validity of the message without help of signer or the designated verifier
- Both signer and designated verifier can prove to any third party that the signature is valid

Nominative Signatures

- Includes two parties:
 - nominator generates a digital signature
 - nominee verifies the validity
- Only nominee can verify the nominator's signature
- Only nominee can prove to some third party that the signature is issued to him and is valid

Group Signatures

- Assume we have a group of users
 - every member is authorized to sign documents on behalf of the group
 - The signature generated by any member is called a group signature
- The receiver of the signature:
 - can verify if it represents the particular group
 - cannot identify which member signed it
- Group members or TA can identify the signer

Ring signatures

- User from the set:
 - can convince the verifier that the signer belongs to the set
 - cannot identify signer
- Unlike group signature, requires additional setup:
 - group manager
 - setup procedure
 - action of the non-signing members
- For signing purposes, signer may choose random set of other possible signers including himself

Threshold signatures

- (t, n) threshold scheme
 - a secret key k is shared among n members of a group
 - any t members are able to cooperate and reconstruct the key k
- (t-1) or less users cannot reveal nothing about the key
- But any set of t or more shareholders can impersonate any other set.
- Malicious set of signers does not have any responsibility for the signatures

Multi Signatures

- Used in applications that require require the signature of more than one person (e.g. bank account, government, etc.)
- Signing is possible only if multiple keys are available
- Each signer produces a valid partial signature on message which is combined further to get a complete signature

Proxy Signatures

- Delegated signature schemes
- Enables original signer to delegate signing authority to a proxy signer
 - temporal absence
 - lack of time or computational power
- Proxy signer can compute a signature, that can be verified with the original signer's public key

Full Delegation

- Alice gives her private key to Bob
- Bob using Alice's private key computes signature
- such signature is indistinguishable from the normal signature

Partial Delegation

- Alice computes proxy key s from her private key x and gives it to the proxy signer Bob in a secure way
- Bob computes signature with the key s
- Such signature is distinguishable from the original signature
- For security reasons key x should not be computable from s

Delegation by Warrant

- Warrant certificate composed of:
 - a message part (that the proxy signer is authorized to sign)
 - public key
- Delegate proxy
 - Alice signs a warrant and declares Peter as proxy signer
 - To sign message, Peter simply signs it and combines with the warrant
 - Warrant differentiates between Peter's normal signature and the proxy signature
- Bearer proxy
 - Alice computes proxy key pair, signs a warrant, and gives to Peter

Partial Delegation with Warrant

- Compromise between delegation by warrant and partial delegation
- Alice generates a secret s from her private key, and includes a warrant
- Alice sends the secret to Peter in a secure way

Threshold Delegation

- Designed for group oriented societies
- (t,n) threshold delegation
 - Alice distributes proxy signature key among n proxy signers
 - To generate a valid proxy signature we need at least t signatures (t <= n)</p>

THANK YOU!