

SELinux

Security Enhanced Linux

Introduction and brief overview.

Copyright © 2005 by Paweł J. Sawicki
http://www.pawel-sawicki.com/

Agenda

● DAC – Discretionary Access Control
● ACL – Access Control Lists
● MAC – Mandatory Access Control
● SELinux

– History
– FLASK
– Details and implementation

● Examples

Discretionary Access Control

● Benefits
– Fast
– Robust
– Well known

● Limitations
– Risky control over the permissions

● Error prone

– Power-users vs. normal users

DAC - continued...

● Examples
– chmod 777 /etc/shadow
– Binding to protected ports (<1024)
– Full control over user’ s files

● Compromised applications
● setuid/setgid

Access Control Lists

● Supersedes DAC in the area of FS permissions
● Imposes overhead
● More complicated than DAC
● Applies to FS permissions only

Mandatory Access Control

● Least privilege approach (opt-in)
● All available information is concerned

SELinux

● Security Enhanced Linux
● Originally developed by the NSA
● LSM – Linux Security Modules

– Object oriented security
– Present in 2.6 Linux kernel tree
– SELinux – inspiration and the main reason

● Type Enforcement™ (TE) & RBAC

SELinux – data storage

● Persistent Security IDs (PSIDs)
– Unused part of an inode in the ext2 FS
– Flat-file storage

● LSM xattrs (extended attributes)
– getfattr
– ext3, xfs, ReiserFS
– Coexistence of multiple security modules
– SELinux being reference implementation

Fundamentals

● Subjects
– Processes

● Objects
– Resources

● Files
● Devices
● Sockets
● Ports
● Processes
● Etc.

MLS

● Multi Level Security
– No data integrity
– No least privilege
– No processes and object duty separation

FLASK

● Security Server
– Security policy logic
– Security contexts

● Access Vector Cache

FLASK – general principles

FLASK – operation

● Considered at the operation attempt
● Security context are sent to the AVC
● AVC check

– Cache driven
– Misses relayed to the SS

● Enforcement Server (kernel) receives the
decision and allows or denies the operation

● Populating audit log (if applicable)

FLASK vs. pure MLS

● No rigidly defined lattice of relationships
● Defining security labels based on

– user identity (UID)
– role attributes
– domain or type attributes
– MLS levels
– ...

Security contexts

● Also known as security labels
● General

– <user>:<role>:<type>
● Example

– system_u:system_r:crond_t

SELinux and FLASK

● No distinction between a type and a domain
– Domains have the process attribute

● Security server, AVC and the policy engine are
incorporated into the kernel

● Domain-type access control w/ role-based
limiting

Policies

● Set of rules that guide the security engine
● Defines types (resources) and domains

(processes)
● Uses roles to limit domain transients
● A domain is akin to a type whenever we

consider processes

Types

● Groups together connected resources
● Abstraction layer for the functionality

– etc_t

Boot up process - 1

● Kernel load
– Initial process gets predefined SID (kernel)

● No policy loaded yet!

● Mounting /proc
– Checks /proc/filesystems for selinuxfs

● Mounting /selinux
● Check /selinux/policyvers
● Check /etc/selinux/config for the policy flavour

Boot up process - 2

● In case of troubles – fall back to old policy
● Remap SIDs into contexts
● /sbin/init re-executes itself
● Normal bootup

TE Rules – Access Vectors
● <av_kind> <source_type(s)> <target_type(s)>:<class(es)> <permission(s)>

● allow named_t sbin_t:dir search;

AVC denied messages

● type=AVC msg=audit(1133209488.535:344):
avc: denied { getattr } for pid=4198
comm="httpd" name="index.html" dev=dm-0
ino=3438923 scontext=root:system_r:httpd_t
tcontext=system_u:object_r:httpd_private_cont
ent_t tclass=file

AVC – continued...

● type=AVC
● msg=audit(1133209488.535:344):
● avc: denied { getattr }
● for pid=4198
● comm="httpd"

AVC – continued...

● name="index.html"
● dev=dm-0
● ino=3438923 scontext=root:system_r:httpd_t
● tcontext=system_u:object_r:httpd_private_cont

ent_t tclass=file

File contexts

● regexp <-type> (<file_label> | <<none>>)
● /bin(/.*)? system_u:object_r:bin_t
● /etc/shadow.* -- system_u:object_r:shadow_t

Targeted vs. Strict

● Only selected subjects are concerned
● Easy to implement
● Non-standard applications

Examples

● Accidental chmod usage
– /etc/shadow
– user directory

● Compromised program
– Port binding
– Port connection

Bibliography
● Security-Enhanced Linux

– http://www.nsa.gov/selinux/

● Red Hat SELinux Guide

– http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/selinux-guide/

● Fedora Core 3 SELinux FAQ

– http://fedora.redhat.com/docs/selinux-faq-fc3/

● The UnOfficial SELinux FAQ

– http://www.crypt.gen.nz/selinux/faq.html

● Getting Started with SE Linux HOWTO: the new SE Linux

– https://sourceforge.net/docman/display_doc.php?docid=20372&group_id=21266

● Writing SE Linux policy HOWTO

– https://sourceforge.net/docman/display_doc.php?docid=21959&group_id=21266

● SELinux, Kerry Thompson

– http://www.samag.com/documents/s=7835/sam0303a/0303a.htm

Questions?

The End!

Legal statement
You may not publish this document in any form

possible without a written permission of the
author.

The most recent version of this presentation is
always available at the following address:

http://pjs.name/papers/

Copyright © 2005 by Paweł J. Sawicki
All rights reserved.

Author: Paweł J. Sawicki <pjs@pjs.name>

