DIGITAL SIGNATURE
INTRODUCTION, CLASSIFICATION, DELEGATION

M. SC. BARTŁOMIEJ SŁOTA
ABSTRACT

- Conventional cryptography
- Diffie – Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes
ABSTRACT

- Conventional cryptography
- Diffie – Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes
Conventional cryptography

- encryption algorithm $c = E(k, m)$
- decryption algorithm $m' = D(k, c)$
Conventional cryptography

- Key must be transmitted by means of a secure channel (courier/meeting)
- If compromised – key may be misused (decryption of real messages, encryption of false messages, etc.)
- There’s no way to conclude from the ciphertext who was the sender (Bob can send message to himself) – source of forgery
- Key management – $n(n-1)/2$
ABSTRACT

- Conventional cryptography
- Diffie – Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes
Diffie-Hellman concept

- Exponential key agreement protocol
- First known public key algorithm
- Cryptosystem
 - q – power of a prime number, defines the order of the finite field F_q
 - g – generator of the multiplicative group of order $q-1$
- Security based on discrete logarithm problem
Diffie-Hellman concept

\[\begin{align*}
 k &= Y^x \mod q = g^{xy} \mod q = X^y \mod q = k' \\
 X &= g^x \mod q \\
 Y &= g^y \mod q \\
 k &= g^{xy} \mod q \\
 k' &= X^y \mod q \\
\end{align*} \]
ABSTRACT

- Conventional cryptography
- Diffie – Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes
Man-in-the-middle attack

- DH cannot stand against MIM attack
- Intruder Mallory may interrupt the communication during key exchange
- Cryptosystem = DH cryptosystem
 - p, q, F_q
Man-in-the-middle attack

\[
k_{AC} = g^{xa \cdot xc} \mod q
\]

\[
k_{BC} = g^{xb \cdot xc} \mod q
\]

Original Communication

Modified Communication
ABSTRACT

- Conventional cryptography
- Diffie – Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes
Public key cryptography

- Success of the MIM attack – sides cannot be sure whose key they are using
- Remedy?
 - Trusted authority
 - Digital certificate
ABSTRACT

- Conventional cryptography
- Diffie – Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes
Hash functions

- Mapping any length messages to fixed length message digests

- \(h = H(M) \)
 - \(h \) – message digest
 - \(M \) – message of any length

- Features
 - Having \(M \) – it is easy to compute \(h = H(M) \)
 - One way property
 - Collision resistance property
ABSTRACT

- Conventional cryptography
- Diffie – Hellman concept
- Man-in-the-middle attack
- Public key cryptography
- Hash functions
- Digital signature
 - Basic schemes
 - Classification
 - Delegated signature schemes
Digital signature

- Electronic analogue to hand written signature
- Provided security services:
 - Authentication
 - Non-repudiation
 - Integrity
- Messages with signature can be encrypted and time-stamped
Digital signature

- Digital signature scheme:
 - The base of every signature algorithm
 - Consists of three phases

Key generation
\[(pk, sk) \leftarrow K()\]

Signing phase
\[s \leftarrow \text{Sign}_{sk}(M)\]
\[s \in \{0,1\}^* \cup \{\perp\}\]

Verification
\[d \leftarrow \text{Ver}_{pk}(M, s)\]
\[d \in \{0,1\}\]
Digital signature - RSA

- Rivest, Shamir, Adleman
- Security based on the IF problem

Key generation
- generate two large distinct random primes \(p \) and \(q \)
- compute \(n = p \times q \) and Euler function \(\varphi(n) = (p-1)(q-1) \)
- select a random integer \(e \), so that \(1 < e < \varphi(n) \), such that \(\gcd(e, \varphi(n)) = 1 \)
- compute \(d \), so that \(1 < d < \varphi(n) \), such that \(ed \equiv 1 \) mod \(\varphi(n) \). In other words, \(d = e^{-1} \) mod \(\varphi(n) \) is the inverse of \(e \).
- \((e, n)\) - public key
- \((d, n)\) - private key
- message space \(M \) and ciphertext space \(C \) is \(\mathbb{Z}_n = \{0, 1, 2, ..., n-1\} \)
Digital signature - RSA

Signature generation
- uses private key
- compute signature $s = m^d \mod n$

Signature verification
- uses signer’s public key (e, n)
- compute $m' = s^e \mod n = m^{ed} \mod n$
- verify if $m' = m$
Digital signature - RSA

Proof
- let's remind the Euler theorem:
 - if a and n are relatively prime, then $a^{\varphi(n)} = 1 \mod n$
- moreover: $ed \equiv 1 \mod \varphi(n) \Rightarrow ed = 1 + x \cdot \varphi(n)$
- so: $m^{ed} = m \cdot m^{x \cdot \varphi(n)} = m \cdot 1^x = m \mod n$
Digital signature - ElGamal

- Security based on the DL problem

Key generation
- Take a large prime number p defining a finite field \mathbb{Z}_p
- Find g - generator of a multiplicative group \mathbb{Z}_p^*
- Compute random secret number x, $1 < x < p$
- Compute $y = g^x \mod p$
- $\{p, g, y\}$ - public key
- x - private key
Digital signature - ElGamal

Signature generation
- uses private key x, and cryptosystem parameters (p, g)
- select a random integer k, $1 < k < p - 1$ such that $\text{gcd}(k, p - 1) = 1$
- compute $r = g^k \mod p$ and $k^{-1} \mod (p - 1)$
- compute $s = k^{-1} [m - x*r] \mod (p - 1)$
- (r, s, m) - signature

Signature verification
- uses public key (p, g, y)
- check if $1 < r < (p - 1)$
- compute $v_1 = y^r * r^s \mod p$
- compute $v_2 = g^m \mod p$
- the signature is valid if and only if $v_1 = v_2$
Proof

\[v_1 = y^r \times r^s \mod p = g^{x\times r} \times r^{k-1} \times [m-x\times r] \mod p \]

\[= g^{x\times r} \times g^k \times k^{-1} \times [m-x\times r] \mod p = g^m \mod p = v_2 \]
Signature classification

1) By mathematical problem on which their security is based
 - Based on IF problem
 - Based on DL problem

2) By the signer identification method
 - Certificate - based signatures
 - ID-based signatures
Signature classification

3) By the usage of randomization
 - randomized schemes
 - deterministic schemes

4) By the ability to recover message
 - Schemes with appendix
 - TMR (Total Message Recovery)
 - PMR (Partial Message Recovery)
Signature classification

- Signature schemes may belong to many of presented groups
- Most of them have special features – another way of classification
- They still use RSA or ElGamal signature scheme
Blind signatures

- Introduced by D. Chaum
- The signer knows neither the message nor its signature
- Alice generates blinds message m using blinding function $m' = f(m)$ and sends to Bob
- Bob signs $s' = \text{Sign}(m')$ and sends the result back to Alice
- Alice computes the reverse blinding function $f'(s') = s$ and gets the signature
- Usage: e-money, e-voting
Undeniable signatures

- Proposed by David Chaum and Hans van Antwerpen
- Digital signatures can be copied exactly
- Verification is possible only with the interaction with the signer
 - only authorized entities can access the document to verify the signature
 - signer cannot deny a valid signature (disavowal protocol)
Designated Confirmers

- Compromise between self-authenticating signatures and undeniable signatures
- A designated confirmer allows certain designated parties to confirm the authenticity at any time without asking the signer
- Others are not able to verify signature without the aid of designated parties or the signer himself
Directed Signatures

- Proposed by Lim and Lee
- Self-authentication property is not suitable for applications like signing personal information (tax bills, prescriptions, etc.)
- Signer sends signed message m to the designated verifier (i.e. patient) while others know nothing on the origin and validity of the message without help of signer or the designated verifier
- Both signer and designated verifier can prove to any third party that the signature is valid
Nominative Signatures

- Includes two parties:
 - nominator - generates a digital signature
 - nominee - verifies the validity

- Only nominee can verify the nominator's signature

- Only nominee can prove to some third party that the signature is issued to him and is valid
Group Signatures

- Assume we have a group of users
 - every member is authorized to sign documents on behalf of the group
 - The signature generated by any member is called a group signature

- The receiver of the signature:
 - can verify if it represents the particular group
 - cannot identify which member signed it

- Group members or TA can identify the signer
Ring signatures

- User from the set:
 - can convince the verifier that the signer belongs to the set
 - cannot identify signer

- Unlike group signature, requires additional setup:
 - group manager
 - setup procedure
 - action of the non-signing members

- For signing purposes, signer may choose random set of other possible signers including himself
Threshold signatures

- (t, n) threshold scheme
 - a secret key k is shared among n members of a group
 - any t members are able to cooperate and reconstruct the key k
- (t-1) or less users cannot reveal nothing about the key
- But any set of t or more shareholders can impersonate any other set.
- Malicious set of signers does not have any responsibility for the signatures
Multi Signatures

- Used in applications that require the signature of more than one person (e.g. bank account, government, etc.)
- Signing is possible only if multiple keys are available
- Each signer produces a valid partial signature on message which is combined further to get a complete signature
Proxy Signatures

- Delegated signature schemes
- Enables original signer to delegate signing authority to a proxy signer
 - temporal absence
 - lack of time or computational power
- Proxy signer can compute a signature, that can be verified with the original signer’s public key
Full Delegation

- Alice gives her private key to Bob
- Bob using Alice’s private key computes signature
- such signature is indistinguishable from the normal signature
Partial Delegation

- Alice computes proxy key s from her private key x and gives it to the proxy signer Bob in a secure way.
- Bob computes signature with the key s.
- Such signature is distinguishable from the original signature.
- For security reasons key x should not be computable from s.
Delegation by Warrant

- **Warrant** - certificate composed of:
 - a message part (that the proxy signer is authorized to sign)
 - public key

- **Delegate proxy**
 - Alice signs a warrant and declares Peter as proxy signer
 - To sign message, Peter simply signs it and combines with the warrant
 - Warrant differentiates between Peter’s normal signature and the proxy signature

- **Bearer proxy**
 - Alice computes proxy key pair, signs a warrant, and gives to Peter
Partial Delegation with Warrant

- Compromise between delegation by warrant and partial delegation
- Alice generates a secret s from her private key, and includes a warrant
- Alice sends the secret to Peter in a secure way
Threshold Delegation

- Designed for group oriented societies
- (t,n) threshold delegation
 - Alice distributes proxy signature key among n proxy signers
 - To generate a valid proxy signature we need at least t signatures (t <= n)
THANK YOU!